

ANSI C Cryptographic API Profile
for SHA-3 Candidate Algorithm Submissions

Revision 5: February 11, 2008

1. Overview

This document specifies the ANSI C interface profile for implementations of SHA-3 candidate
algorithms. C implementations shall support the syntax and parameterization of the interface profile
messages as described in this API. The API consists of a few data definitions, one data structure, and
four functions to compute hashes. The functions specified in this API have return values listed that are
largely used to supply error codes in the event of incomplete execution of the routines. The error values
listed are not meant to be an exhaustive list. If additional error codes are useful for your
implementation, please provide them.

2. Data Definitions

The following typedef is used to specify the arrays that will hold the data to be hashed and the resulting
hash value.

typedef unsigned char BitSequence;

The byte length, n, of a BitSequence data item of length bitlen will be n = bitlen/8, e.g., an 8-bit
message will require 1 BitSequence element and a 13-bit message will require 2 BitSequence elements.
BitSequence arrays will be indexed from 0 to n-1. Sequences of bits are enumerated from 0 to (bitlen-
1). The ith bit of the sequence will be stored in array element i/8. Within a BitSequence array element,
the bits are indexed from 0 to 7 with bit 0 being the Most Significant Bit (MSB), i.e., the bit with the
largest numerical value. Therefore, the ith bit of the BitSequence will be found in the i % 8 bit position
of the i/8 bitSequence element.

The following typedef is used to provide the data length of the message to be hashed. It should be set to
the largest integral data type that the target platform and compiler can understand. Preferably this will
be an unsigned 64-bit integer. If the target platform and compiler cannot handle a 64-bit data type, use a
32-bit unsigned data type instead.

typedef unsigned long long DataLength; // a typical 64-bit value

The following enumeration is to provide return values for the API Hash function. Additional return
values may be added. These values shall be documented.

typedef enum { SUCCESS = 0, FAIL = 1, BAD_HASHBITLEN = 2 } HashReturn;

3. Data Structure

The hashState structure contains all information necessary to describe the current state of the SHA-3
candidate algorithm. The only required field, hashbitlen, indicates the output size of this particular

 2

instantiation of the hash algorithm. Algorithm specific fields may be placed anywhere in the structure
below. These include things like data storage needed to hold intermediate values, tables, unprocessed
data, etc. All implementations must be sure to document any algorithm-specific parameters and
their use.

typedef struct {

//hashbitlen + algorithm specific parameters
} hashState;

4. Function Calls

There are four function calls specified in this API. The first three provide a method for performing
incremental hashing with the candidate algorithm. The fourth provides a method to perform all-at-once
hashing of the supplied data.

4.1. Init()

Each SHA-3 submitter is required to implement this interface because NIST anticipates that some
candidate algorithms will have unique requirements to initialize the hashState structure.

This API uses a function called Init() to initialize the hashState structure. As stated above, the
hashState structure contains the hashbitlen of this particular instantiation, as well as any
algorithm specific parameters that are needed. Implementations shall support, at a minimum,
hashbitlen values of 224, 256, 384, and 512-bits. Additionally, if an algorithm can support other
hash lengths, these digest sizes should be supported in this code as well.

The initialization function, Init(), is called with the appropriate parameters which get loaded into the
hashState structure. These parameters are then used to perform any data independent setup that is
necessary, e.g., initialization of any intermediate values, initialization of any tables, etc.

 Init()

HashReturn Init(hashState *state, int hashbitlen);

Initializes a hashState with the intended hash length of this particular instantiation.
Additionally, any data independent setup is performed.

Parameters:

state: a structure that holds the hashState information
hashbitlen: an integer value that indicates the length of the hash output in bits.

Returns:

SUCCESS - on success
BAD_HASHBITLEN - hashbitlen is invalid (e.g., unknown
value)

 3

4.2. Update()

This API uses a function called Update() to process data using the algorithm’s compression function.
Whatever integral amount of data the Update() routine can process through the compression function
is handled. Any remaining data must be stored for future processing. For example, SHA-1 has an
internal structure of 512-bit data blocks. If the Update() function is called with 768-bits of data the
first 512-bits will be processed through the compression function (with appropriate updating of the
chaining values) and 256-bits will be retained for future processing. If 2048-bits of data were provided,
all 2048-bits would be processed immediately. If incremental hashing is being performed, all calls to
update will contain data lengths that are divisible by 8, except, possibly, the last call.

The Update() function is called with a pointer to the appropriate hashState structure, the data to
be processed, and the length of the data to be processed (databitlen). The Update() routine
processes as much data as it can, updating all appropriate intermediate values, and returns a status code.

 Update()

HashReturn Update(hashState *state, const BitSequence *data,

 DataLength databitlen);

Process the supplied data.

Parameters:
state: a structure that holds the hashState information
data: the data to be hashed
databitlen: the length, in bits, of the data to be hashed

Returns:

SUCCESS - on success

4.3. Final()

This API uses a function called Final() to process any remaining partial block of the input data and
to perform any output filtering that may be needed to produce the final hash value. For example, SHA-1
requires appending a “1”-bit to the end of the message followed by an appropriate number of “0”-bits
and the length field. This is all processed through the compression function to produce the final hash
value for the message.

The Final() function is called with pointers to the appropriate hashState structure and the storage
for the final hash value to be returned (hashval). The Final() routine performs any post processing
that is necessary, including the handling of any partial blocks, and places the final hash value in
hashval. Lastly, an appropriate status value is returned.

 4

 Final()

HashReturn Final(hashState *state, BitSequence *hashval);

Perform any post processing and output filtering required and return the final hash value.

Parameters:
state: a structure that holds the hashState information
hashval: the storage for the final hash value to be returned

Returns:

SUCCESS - on success

4.4. Hash()

This API uses a function called Hash() to provide a method to perform all-at-once processing of data
using the candidate algorithm and to return the resulting hash value. The Hash() function is called
with a pointer to the data to be processed, the length of the data to be processed (databitlen), a
pointer to the storage for the resulting hash value (hashval), and a length of the desired hash value
(hashbitlen). This function shall utilize the previous three function calls, namely Init(),
Update(), and Final().

 Hash()

HashReturn Hash(int hashbitlen, const BitSequence *data,

 DataLength databitlen, BitSequence *hashval);

Hash the supplied data and provide the resulting hash value. Set return code as
appropriate.

Parameters:
hashbitlen: the length in bits of the desired hash value
data: the data to be hashed
databitlen: the length, in bits, of the data to be hashed
hashval: the resulting hash value of the provided data

Returns:

SUCCESS - on success
FAIL – arbitrary failure
BAD_HASHBITLEN – unknown hashbitlen requested
...

