
Grøstl – a SHA-3 candidate ∗

http://www.groestl.info

Praveen Gauravaram1, Lars R. Knudsen1, Krystian Matusiewicz2, Florian Mendel3,
Christian Rechberger4, Martin Schläffer3, and Søren S. Thomsen1

1Department of Mathematics, Technical University of Denmark, Matematiktorvet 303S,
DK-2800 Kgs. Lyngby, Denmark

2Intel Technology Poland, Juliusza S lowackiego 173, 80-298 Gdansk, Poland
3Institute for Applied Information Processing and Communications (IAIK), Graz

University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria
4Department of Electrical Engineering ESAT/COSIC, Katholieke Universiteit Leuven,

Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium

January 16, 2011

Summary

Grøstl is a SHA-3 candidate proposal. Grøstl is an iterated hash function with a compression
function built from two fixed, large, distinct permutations. The design of Grøstl is transparent
and based on principles very different from those used in the SHA-family.

The two permutations are constructed using the wide trail design strategy, which makes
it possible to give strong statements about the resistance of Grøstl against large classes of
cryptanalytic attacks. Moreover, if these permutations are assumed to be ideal, there is a proof
for the security of the hash function.

Grøstl is a byte-oriented SP-network which borrows components from the AES. The S-box
used is identical to the one used in the block cipher AES and the diffusion layers are constructed
in a similar manner to those of the AES. As a consequence there is a very strong confusion and
diffusion in Grøstl.

Grøstl is a so-called wide-pipe construction where the size of the internal state is signifi-
cantly larger than the size of the output. This has the effect that all known, generic attacks on
the hash function are made much more difficult.

Grøstl has good performance on a wide range of platforms, and counter-measures against
side-channel attacks are well-understood from similar work on the AES.

∗Document version no. 2.0 (updated January 16, 2011). A few simple changes have been made to the constants
in Grøstl in order to increase its security margin without penalizing its speed. This document describes the
changed algorithm. We refer to the previous version as Grøstl-0.

1

http://www.groestl.info

Contents

1 Introduction 4

2 Design goals 4
2.1 Overall goals for the hash . 4
2.2 Failure-tolerant design . 5
2.3 Design considerations for the compression function 5

3 Specification of Grøstl 5
3.1 The hash function construction . 5
3.2 The compression function construction . 6
3.3 The output transformation . 6
3.4 The design of P and Q . 7
3.5 Initial values . 12
3.6 Padding . 12
3.7 Summary . 13

4 Design decisions and design features 13
4.1 The security of the construction . 13
4.2 AddRoundConstant . 14
4.3 SubBytes . 14
4.4 ShiftBytes and ShiftBytesWide . 14
4.5 MixBytes . 15
4.6 Output transformation . 15
4.7 Number of rounds . 16
4.8 Absence of trap-doors . 16

5 Alternative descriptions of Grøstl 16
5.1 The output transformation as a compression function call 16
5.2 Tessaro’s observation . 17
5.3 Barreto’s observation . 17

6 Modes of use for Grøstl 17
6.1 Message authentication . 17
6.2 Randomised hashing . 18
6.3 Security claims for the mentioned modes of operation 18

7 Cryptanalytic results 19
7.1 Attacks exploiting properties of the permutations 19
7.2 Generic collision attacks . 21
7.3 Generic attacks on the iteration . 22
7.4 Non-random properties of the compression function 23
7.5 Kelsey’s observations . 24
7.6 Security claims and summary of known attacks 24

8 Implementation aspects 25
8.1 Software implementations . 25
8.2 Benchmarks on PC platforms . 27
8.3 Hardware implementations . 30

2

8.4 Implementation attacks . 31

9 Conclusion 32

A The name 41

B S-box 41

3

1 Introduction

In this proposal we present the cryptographic hash function Grøstl, candidate for the SHA-3
competition initiated by the National Institute of Standards and Technology (NIST).

The paper is organised as follows. In Section 2, we give a high-level summary of the Grøstl

proposal, and state the design goals. In Section 3, we present the details of the proposal
and in Section 4, we describe the features specific to Grøstl and motivate our design choices.
Section 5 introduces some alternative descriptions of Grøstl and Section 6 describes some modes
of operation of Grøstl for the use as message authentication codes. In Section 7, we present
our preliminary cryptanalysis results on Grøstl. Section 8 deals with implementation aspects
of Grøstl, including benchmarks results and performance estimates. Finally, we conclude in
Section 9.

The name “Grøstl” may cause some problems in terms of pronunciation, and also due
to the character ‘ø’, which has different encodings around the world. Whenever problems
with character encodings may arise, we recommend the spelling Groestl. With respect to
pronunciation and other information on the name, see Appendix A.

2 Design goals

In this section, we give a brief motivation of the Grøstl proposal. Elegance of the design and
simplicity of analysis, as well as proofs of desirable properties are the overall goals. The fact that
it iteratively applies a compression function is among the few similarities with commonly used
hash functions. Additionally, we aim to have security margins at several layers of abstraction
in the design.

2.1 Overall goals for the hash

Here we state overall design goals for Grøstl.

• Simplicity of analysis, hence, Grøstl is based on a small number of permutations instead
of a block cipher (with many permutations).

• Provably secure construction (assuming ideal permutations).

• Well-known design principles underlying the permutations (again, allowing simple analy-
sis, provable properties).

• No special preference for a particular platform or word size, and good performance on a
very wide range of platforms.

• Side-channel resistance at little additional cost.

• Defining reduced variants for cryptanalysis is made straightforward.

• Prevention of length-extension attacks.

• Allow implementers to exploit parallelisation within the compression function1.

1Using Grøstl in a tree-mode, as any other cryptographic hash function for that matter, will also allow to
exploit parallelisation at a higher level, but we consider this outside the scope of our submission.

4

2.2 Failure-tolerant design

Non-random behaviour of the employed permutations do not necessarily lead to non-ideal prop-
erties of the compression function. Attacks on the compression function, in turn, may not lead
to attacks on the hash function.

• The internal state is significantly larger than the final output – hence, all known generic
attacks are thwarted.

• Known techniques that exhibit non-ideal behaviour of the permutations work only for
reduced variants.

• Attacks on the compression function do not necessarily translate to attacks on the hash
function.

• There are no known attacks on the compression function meeting the proven lower bounds.

2.3 Design considerations for the compression function

Traditional design approaches of hash functions are based on block ciphers, e.g., MD5, SHA-1,
SHA-256 [73], Whirlpool [7], Tiger [1], etc. This may seem sound since block cipher designs
are well understood. However, the key schedule of the block cipher becomes more important
in a setting where the attacker has control over every input and there is little consensus in the
community what constitutes a good key schedule. The recent attacks [27, 49, 67, 70, 91] on
SHA-1 and Tiger illustrate this issue. For this reason we base our proposal on a few individual
permutations rather than a large family of permutations indexed by a key. The advantages of
such a design methodology is as follows:

• No threat of attacks via the key schedule (e.g., weak keys).

• Since the key schedule of a block cipher is often rather slow, performance may be improved.

• Simplicity.

3 Specification of Grøstl

Grøstl is a collection of hash functions, capable of returning message digests of any number of
bytes from 1 to 64, i.e., from 8 to 512 bits in 8-bit steps. The variant returning n bits is called
Grøstl-n. We explicitly state here that this includes the message digest sizes 224, 256, 384,
and 512 bits. We now specify the Grøstl hash functions.

3.1 The hash function construction

The Grøstl hash functions iterate the compression function f as follows. The message M is
padded and split into `-bit message blocks m1, . . . ,mt, and each message block is processed
sequentially. An initial `-bit value h0 = iv is defined, and subsequently the message blocks mi

are processed as
hi ← f(hi−1,mi) for i = 1, . . . , t.

Hence, f maps two inputs of ` bits each to an output of ` bits. The first input is called the
chaining input, and the second input is called the message block. For Grøstl variants returning
up to 256 bits, ` is defined to be 512. For larger variants, ` is 1024.

5

After the last message block has been processed, the output H(M) of the hash function is
computed as

H(M) = Ω(ht),

where Ω is an output transformation which is defined in Section 3.3. The output size of Ω is n
bits, and we note that n ≤ 2 · `. See Figure 1.

f

m1

f

m2

f

m3

f

mt

iv
` ` n

Ω H(m)

Figure 1: The Grøstl hash function.

3.2 The compression function construction

The compression function f is based on two underlying `-bit permutations P and Q. It is
defined as follows:

f(h,m) = P (h⊕m)⊕Q(m)⊕ h. (1)

The construction of f is illustrated in Figure 2. In Section 3.4, we describe how P and Q are
defined.

P Q

hi−1

hi

mi

f

Figure 2: The compression function f . P and Q are `-bit permutations.

3.3 The output transformation

Let truncn(x) be the operation that discards all but the trailing n bits of x. The output
transformation Ω illustrated in Figure 3 is then defined by

Ω(x) = truncn(P (x)⊕ x).

6

x P

Figure 3: The output transformation Ω computes P (x) ⊕ x and then truncates the output by
returning only the last n bits.

3.4 The design of P and Q

As mentioned, the compression function f comes in two variants; one is used for short message
digests, and one is used for long message digests. Each variant uses its own pair of permutations
P and Q. Hence, we define four permutations in total. The permutations will be assigned with
subscripts 512 or 1024, whenever it is necessary to distinguish them.

The design of P and Q was inspired by the Rijndael block cipher algorithm [23, 24]. This
means that their design consist of a number of rounds R, which consists of a number of round
transformations. Since P and Q are much larger than the 128-bit state size of Rijndael, most
round transformations have been redefined. In Grøstl, a total of four round transformations
are defined for each permutation. These are

• AddRoundConstant

• SubBytes

• ShiftBytes

• MixBytes.

When a distinction is necessary, the third transformation ShiftBytes will be called ShiftBytesWide
when used in the large permutations P1024 and Q1024. While AddRoundConstant and ShiftBytes
are different for each permutation, SubBytes and MixBytes are identical in all four permutations.

A round R consists of these four round transformations applied in the above order as illus-
trated in Figure 4. Hence,

R = MixBytes ◦ ShiftBytes ◦ SubBytes ◦ AddRoundConstant.

We note that all rounds follow this definition. We denote by r the number of rounds. Concrete
recommendations for r will be given in Section 3.4.6.

The transformations operate on a state, which is represented as a matrix A of bytes (of
8 bits each). For the short variants the matrix has 8 rows and 8 columns, and for the large
variants, the matrix has 8 rows and 16 columns. In the following, we denote by v the number
of columns, and we write constant byte values in sans serif font, e.g., c3. In the following, we
describe how to map a byte sequence to a state matrix and back, and then we describe each
round transformation.

3.4.1 Mapping from a byte sequence to a state matrix and vice versa

Since Grøstl operates on bytes, it is generally endianness neutral. However, we need to specify
how a byte sequence is mapped to the matrix A, and vice versa. This mapping is done in a

7

AddRoundConstant
SubBytes
ShiftBytes
MixBytes

Figure 4: One round of the Grøstl permutations P and Q is a composition of four basic
transformations.

similar way as in Rijndael. Hence, the 64-byte sequence 00 01 02 ... 3f is mapped to an 8 × 8
matrix as

00 08 10 18 20 28 30 38
01 09 11 19 21 29 31 39
02 0a 12 1a 22 2a 32 3a
03 0b 13 1b 23 2b 33 3b
04 0c 14 1c 24 2c 34 3c
05 0d 15 1d 25 2d 35 3d
06 0e 16 1e 26 2e 36 3e
07 0f 17 1f 27 2f 37 3f

.

For an 8× 16 matrix, this method is extended in the natural way. Mapping from a matrix to a
byte sequence is simply the reverse operation. From now on, we do not explicitly mention this
mapping.

3.4.2 AddRoundConstant

The AddRoundConstant transformation adds a round-dependent constant to the state matrix A.
By addition we mean exclusive-or (XOR). To be precise, the AddRoundConstant transformation
in round i (starting from zero) updates the state A as

A← A⊕ C[i],

where C[i] is the round constant used in round i. P and Q have different round constants.

8

The round constants for P512 and Q512 are

P512 : C[i] =

00⊕ i 10⊕ i 20⊕ i 30⊕ i 40⊕ i 50⊕ i 60⊕ i 70⊕ i
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

and

Q512 : C[i] =

ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff
ff ⊕ i ef ⊕ i df ⊕ i cf ⊕ i bf ⊕ i af ⊕ i 9f ⊕ i 8f ⊕ i

where i is the round number viewed as an 8-bit value, and all other values are written in
hexadecimal notation.

Similarly, the round constants for P1024 and Q1024 are

P1024 : C[i] =

00⊕ i 10⊕ i 20⊕ i 30⊕ i 40⊕ i 50⊕ i 60⊕ i 70⊕ i · · · f0⊕ i
00 00 00 00 00 00 00 00 · · · 00
00 00 00 00 00 00 00 00 · · · 00
00 00 00 00 00 00 00 00 · · · 00
00 00 00 00 00 00 00 00 · · · 00
00 00 00 00 00 00 00 00 · · · 00
00 00 00 00 00 00 00 00 · · · 00
00 00 00 00 00 00 00 00 · · · 00

and

Q1024 : C[i] =

ff ff ff ff ff ff ff ff · · · ff
ff ff ff ff ff ff ff ff · · · ff
ff ff ff ff ff ff ff ff · · · ff
ff ff ff ff ff ff ff ff · · · ff
ff ff ff ff ff ff ff ff · · · ff
ff ff ff ff ff ff ff ff · · · ff
ff ff ff ff ff ff ff ff · · · ff
ff ⊕ i ef ⊕ i df ⊕ i cf ⊕ i bf ⊕ i af ⊕ i 9f ⊕ i 8f ⊕ i · · · 0f ⊕ i

where i is again the round number viewed as an 8-bit value.

3.4.3 SubBytes

The SubBytes transformation substitutes each byte in the state matrix by another value, taken
from the s-box S. This s-box is the same as the one used in Rijndael and its specification can

9

be found in Appendix B. Hence, if ai,j is the element in row i and column j of A, then SubBytes
performs the following transformation:

ai,j ← S(ai,j), 0 ≤ i < 8, 0 ≤ j < v.

See Figure 5.

S(·)

Figure 5: SubBytes substitutes each byte of the state by its image under the s-box S.

3.4.4 ShiftBytes and ShiftBytesWide

ShiftBytes and ShiftBytesWide cyclically shift the bytes within a row to the left by a number
of positions. Let σ = [σ0, σ1, . . . , σ7] be a list of distinct integers in the range from 0 to v − 1.
Then, ShiftBytes moves all bytes in row i of the state matrix σi positions to the left, wrapping
around as necessary. The vector σ in ShiftBytes respectively ShiftBytesWide is different for
P and Q. For ShiftBytes in P , we use σ = [0, 1, 2, 3, 4, 5, 6, 7] and for ShiftBytes in Q, we use
σ = [1, 3, 5, 7, 0, 2, 4, 6]. Similarly, for ShiftBytesWide in P and Q, we use σ = [0, 1, 2, 3, 4, 5, 6, 11]
and σ = [1, 3, 5, 11, 0, 2, 4, 6] respectively. The transformations ShiftBytes and ShiftBytesWide
for P and Q are illustrated in Figure 6 and Figure 7.

shift by 0
shift by 1
shift by 2
shift by 3
shift by 4
shift by 5
shift by 6
shift by 7

shift by 1
shift by 3
shift by 5
shift by 7
shift by 0
shift by 2
shift by 4
shift by 6

Figure 6: The ShiftBytes transformation of permutation P512 (top) and Q512 (bottom).

10

shift by 0
shift by 1
shift by 2
shift by 3
shift by 4
shift by 5
shift by 6
shift by 11

shift by 1
shift by 3
shift by 5
shift by 11
shift by 0
shift by 2
shift by 4
shift by 6

Figure 7: The ShiftBytesWide transformation of permutation P1024 (top) and Q1024 (bottom).

3.4.5 MixBytes

In the MixBytes transformation, each column in the matrix is transformed independently. To
describe this transformation we first need to introduce the finite field F256. This finite field is
defined in the same way as in Rijndael via the irreducible polynomial x8 ⊕ x4 ⊕ x3 ⊕ x⊕ 1 over
F2. The bytes of the state matrix A can be seen as elements of F256, i.e., as polynomials of
degree at most 7 with coefficients in {0, 1}. The least significant bit of each byte determines
the coefficient of x0, etc.

MixBytes multiplies each column of A by a constant 8 × 8 matrix B in F256. Hence, the
transformation on the whole matrix A can be written as the matrix multiplication

A← B ×A.

The matrix B is specified as

B =

02 02 03 04 05 03 05 07
07 02 02 03 04 05 03 05
05 07 02 02 03 04 05 03
03 05 07 02 02 03 04 05
05 03 05 07 02 02 03 04
04 05 03 05 07 02 02 03
03 04 05 03 05 07 02 02
02 03 04 05 03 05 07 02

.

This matrix is circulant, which means that each row is equal to the row above rotated right
by one position. In short, we may write B = circ(02, 02, 03, 04, 05, 03, 05, 07) instead. See also
Figure 8.

11

B = circ(02, 02, 03, 04, 05, 03, 05, 07)

Figure 8: The MixBytes transformation left-multiplies each column of the state matrix treated
as a column vector over F256 by a circulant matrix B.

3.4.6 Number of rounds

The number r of rounds is a tunable security parameter. We recommend the following values
of r for the four permutations.

Permutations Digest sizes Recommended value of r

P512 and Q512 8–256 10
P1024 and Q1024 264–512 14

3.5 Initial values

The initial value ivn of Grøstl-n is the `-bit representation of n. The table below shows the
initial values of the required output sizes of 224, 256, 384, and 512 bits.

n ivn

224 00 ... 00 00 e0
256 00 ... 00 01 00
384 00 ... 00 01 80
512 00 ... 00 02 00

3.6 Padding

As mentioned, the length of each message block is `. To be able to operate on inputs of varying
length, a padding function pad is defined. This padding function takes a string x of length N
bits and returns a padded string x∗ = pad(x) of a length which is a multiple of `.

The padding function does the following. First, it appends the bit ‘1’ to x. Then, it appends
w = −N − 65 mod ` ‘0’ bits, and finally, it appends a 64-bit representation of (N + w + 65)/`.
This number is an integer due to the choice of w, and it represents the number of message
blocks in the final, padded message.

Since it must be possible to encode the number of message blocks in the padded message
within 64 bits, the maximum message length is 65 bits short of 264− 1 message blocks. For the
short variants, the maximum message length in bits is therefore 512 · (264− 1)− 65 = 273− 577,
and for the longer variants it is 1024 · (264 − 1)− 65 = 274 − 1089.

12

3.7 Summary

First, a message which is to be digested by Grøstl is padded using the padding function pad.
The hash function then iterates a compression function f : {0, 1}` × {0, 1}` → {0, 1}`, which is
based on two permutations P and Q. If the output size n of the hash function is at most 256
bits, we set ` = 512. For the longer variants, we set ` = 1024. Hence, we ensure that ` ≥ 2n for
all cases. The initial value of Grøstl-n is the `-bit representation of n. At the end, the output
of the last call to f is processed by the output transformation Ω, which reduces the output size
from ` to n bits.

4 Design decisions and design features

In this section, we explain the design decisions made for Grøstl and some features of the Grøstl
design. First, we list a number of advantages of Grøstl compared to many other hash functions
proposed in the past.

• Security proof of the construction. The compression function construction used in
Grøstl is provably collision resistant and preimage resistant assuming that the permuta-
tions P and Q are ideal. The Grøstl construction was proved to be indifferentiable from
a random oracle assuming that the permutations P and Q are ideal and independent from
each other. See Section 4.1.

• Flexibility. The algorithm can be efficiently implemented on many platforms. The
security parameter r, the number of rounds, can be easily changed.

• Simplicity. Both the construction and the design of the permutations are simple and
easy to understand and remember.

• Familiarity. Being based on the well known Rijndael design, most cryptographers and
cryptographic software implementors will quickly feel acquainted with Grøstl. Moreover,
the design principles behind Rijndael have already proven themselves advantageous.

4.1 The security of the construction

In general, security reduction proofs for hash functions address how secure they are when they
are instantiated with ideal components. The proofs aim to estimate the security levels of the
hash functions with respect to the standard properties such as collision resistance and (second)
preimage resistance as well as for the strong security notions such as indifferentiability from
the random oracle. In general, security reduction proofs may be given for the compression
functions, hash functions or both.

In this direction, the compression function f was proved to be secure assuming that the two
permutations P and Q are ideal [32]. The security proof states that at least 2`/4 evaluations
of P and/or Q are required to find a collision for the hash function that iterates f , and that
at least 2`/2 evaluations are required to find a preimage. Note that these levels are the square
root of the security levels for an ideal compression function. However, since ` ≥ 2n, internal
collision and preimage attacks on the hash functions have complexities of at least 2n/2 and 2n.
This analysis assumes that the ` output bits of the last call to f are the final output of the hash
function. However, in Grøstl, an output transformation is applied. We discuss this output
transformation in Section 4.6.

The Grøstl construction was also proved to be indifferentiable from a random oracle [3]
upto the birthday bound. This result states that when the permutations P and Q are assumed

13

ideal and independent from each other, Grøstl behaves like a random oracle for up to O(2n/2)
queries.

We remark that although these security proofs assume that the permutations P and Q
are ideal, we do not claim their ideality. We only use these security proofs to show that the
compression function and hash function constructions are sound. This is similar to using the
security proof [16] of one of the PGV constructions [81] to show that this construction is sound,
without claiming that the underlying block cipher is ideal. On the other hand, an attack that
demonstrates non-ideality of the permutations does not necessarily extend to an attack on the
hash function.

4.2 AddRoundConstant

The purpose of adding round constants is to make each round different and at the same time
this provides a natural opportunity to make P and Q independent from each other. If the
rounds are all the same, then fixed points x such that R(x) = x for the round function R
extend to the entire permutation. For example, if P = R10, then fixed points for R2 and R5

would also extend to P . Therefore, one can expect several fixed points for P , whereas for an
ideal permutation only a single fixed point is expected. By choosing round-dependent constants
for AddRoundConstant, we expect the number of fixed points of P and Q to be 1.

In addition, by having different round constants for AddRoundConstant in P and Q, the
internal differential attack [80], which considers differences between the permutations P and
Q, can be made infeasible. Hence, the consequences of this differential attack, such as the
distinguisher for the compression function [80] and collisions for the reduced round Grøstl

function [43], can be thwarted.

4.3 SubBytes

The SubBytes transformation is the only non-linear transformation in Grøstl. It uses the same
s-box as used in Rijndael. For a walk-through of its properties, we refer to one of [23, 24].

The choice for this particular transformation was driven by the following reasoning:

• Size: 8-bit s-boxes are a convenient trade-off between implementation aspects (smallest
word size on popular platforms) and cryptanalytic considerations. On the other hand,
there are 28! different permutations to choose from.

• Single s-box rather than many different s-boxes: this is again a trade-off between imple-
mentation and cryptanalytic considerations.

• No random s-box: A structured s-box allows for significantly more efficient hardware
implementation than a random s-box.

• The particular structure of the chosen s-box was already proposed in 1993 [76] and has
therefore undergone a long period of study.

• Since the s-box is inherited from the AES, implementation aspects (especially in hardware)
are well studied.

4.4 ShiftBytes and ShiftBytesWide

We had two design criteria for ShiftBytes and ShiftBytesWide. First, we needed shift values
which result in optimal diffusion. Let νt,c(ai,j) be the number of times that a state byte ai,j
affects every state byte of column c after t rounds. In detail, νt,c(ai,j) defines how often (or in

14

how many ways) every state byte of column c depends on ai,j . Hence, we have full diffusion
after t rounds if νt,c(ai,j) ≥ 1 for all columns c and state bytes ai,j . In other words, each state
byte is affected by every state byte ai,j at least once. Let t∗ be the value of t for which this
happens. Then we get optimal diffusion, if min(νt∗,c(ai,j)) is maximal for a specific geometry.

Second, to make P and Q more independent form each other, we use different shift values
in P and Q. In more detail, we use shift values in Q such that no row is shifted by the same
amount as in P , and such that the resulting states in P and Q are not simply shifted versions
of each other. This way, it becomes much more difficult to ensure that differences or any other
pattern in P and Q may line-up or cancel each other. We achieve this property using shift
values in Q with a different (halved or doubled) slope than in P .

The shift values used for P512 are the most obvious ones. For Q512 we used the same shift
values in a different order to get a halved slope (see Figure 6). Both cause optimal diffusion
after two rounds. For P1024 and Q1024 (ShiftBytesWide) we have searched for shift values with
optimal diffusion after three rounds (two rounds is not possible) and get optimal diffusion if
min(ν3,c(ai,j)) = 2. For P1024, we have chosen the first set of such values when sorted in
lexicographical order. Again for Q1024, we used the same shift values as in P1024 in a different
order to get optimal independence (see Figure 7).

4.5 MixBytes

The main design goal of the MixBytes transformation is to follow the wide trail strategy. Hence,
the MixBytes transformation is based on an error-correcting code with the MDS (maximum
distance separable) property. This ensures that both the differential and linear branch number
is 9. In other words, a difference in k > 0 bytes of a column will result in a difference of at least
9− k bytes after one MixBytes application.

Since there exist many MDS codes, we have chosen a code which can be implemented
efficiently in many settings. The MixBytes transformation multiplies each column of A with the
MDS matrix B = circ(02, 02, 03, 04, 05, 03, 05, 07) (see Section 3.4.5) over the finite field F256.
In most environments, the multiplication with a constant of this matrix is the most expensive
part. The implementation costs can be reduced by using constants of low degree. The minimum
degree of the constants for an MDS code of size 8 is 2. However, this comes at a higher cost
for the additions due to a slightly higher Hamming weight of the elements. Therefore, we have
chosen a set of values where we can compensate these costs by the possibility of combining
more intermediate results during the matrix multiplication. Especially on 8-bit platforms, this
results in more efficient implementations.

4.6 Output transformation

Since the size of the chaining variables is larger than the required output size, an output trans-
formation is needed. Simple truncation would be a possibility. However, since the compression
function is not ideal (see Section 7.2), we chose to apply a function which is believed to be
one-way and collision resistant, but does not compress before the truncation.

Let ω(x) = P (x) ⊕ x. The Matyas-Meyer-Oseas construction [64] for hash functions based
on block ciphers provides a compression function g based on the encryption function EK (with
K being the key) as follows:

g(h,m) = Eh(m)⊕m.

This function g has been proved to provide a collision resistant and one-way hash function
when iterated in the Merkle-Damg̊ard mode [16], under the assumption that E is an ideal block
cipher. This implies that g is collision resistant and one-way if h is fixed, since this corresponds

15

to hashing a one-block message. Hence, g̃(m) = Eh∗(m) ⊕ m, where h∗ is a constant, is
one-way and collision resistant as well. Since g̃ = ω with P = Eh∗ , we believe that ω is one-
way and collision resistant. This seems to make it difficult to attack Grøstl via the output
transformation.

4.7 Number of rounds

The choice of the (recommended) number of rounds is primarily based on the cryptanalysis
results described in Section 7. The square/integral attack indicates that the permutations
might be distinguishable from ideal if the number of rounds is 7 or less in the short variants,
and 9 or less in the long variants. The classic rebound attack and its developments show that
finding collisions for the compression function of short and long variants is difficult beyond 7
rounds due to insufficient degrees of the freedom. For a similar reason, collision attacks on the
hash function are currently limited to 3 rounds. Moreover, having two distinct permutations
in the compression function avoids the internal differential attacks that aim to distinguisher
the compression function or attack the hash function by analyzing differences between the two
permutations. To summarise, we believe that the final choice of the number of rounds provides
a reasonably large security margin for the Grøstl hash functions.

4.8 Absence of trap-doors

It should be clear that all constants used in Grøstl, including the s-box, have been selected in a
way that does not leave enough freedom to deliberately insert trap-doors in the hash function.
In general, we faithfully declare that we have not inserted any hidden weaknesses in Grøstl.

5 Alternative descriptions of Grøstl

The alternative descriptions of functions serve several purposes. They potentially bring greater
insights into its security, and may also lead to more efficient implementations. In the standard
description of Grøstl, the hash function iterates a permutation-based compression function,
and then applies an output transformation to form the final hash of a message. However, as we
shall see in this section, there are other ways of describing Grøstl.

5.1 The output transformation as a compression function call

The output transformation is defined as ω(x) = truncn(P (x) ⊕ x). Notice that ω(x) =
truncn(f(x, 0`)⊕Q(0`)). Hence, ifH is the Grøstl hash function, H̃ is Grøstl without the output
transformation and M is the already padded message, then H(M) = truncn(H̃(M‖0`)⊕Q(0`)),
which is also illustrated by Figure 9. Since the XOR with Q(0`) has no cryptographic signif-
icance, we may ignore it and consider the description truncn(H̃(M‖0`)). The suffix 0` can be
seen as an additional padding block.

iv f f--

- -

m2m1

. . . f-

-

mt

f-

-

0`

-

Q(0`)

? -
trunc

- H(M)

Figure 9: An alternative description of the Grøstl hash function.

16

This description more clearly shows the validity of Kelsey’s observation that Grøstl without
truncation does not protect against length extension attacks as described in Section 7.5. What
precludes an attack based on this observation is the truncation from ` to n bits. Since at least
n bits are dropped in this truncation, the probability of correctly guessing those bits is about
2−n. The alternative description can also be seen as an indication that Grøstl is in fact an
instance of the chop-MD construction, which prevents length extension attacks [20].

Some implementations of Grøstl might benefit from this alternative description. It shows
that one does not have to specifically implement an output transformation function; the com-
pression function can be used instead. Although this is not likely to improve the speed of
implementations, it might reduce code size or area.

Finally, the alternative description shows that the “P (x) ⊕ x” part of the output trans-
formation does not have unexpected negative side effects. Hence, it does not lead to attacks
that would not be possible with mere truncation. Since, as mentioned in Section 7.5, mere
truncation leads to attacks that are not possible with the true definition of the Grøstl output
transformation, we can conclude that the “P (x)⊕ x” part strictly improves the security of the
hash function.

5.2 Tessaro’s observation

Similar to the above description of Grøstl, Tessaro [84] observed that

H(M) = truncn(Ĥ(M‖Q−1(0`))⊕Q−1(0`)) ,

where Ĥ is the Merkle-Damg̊ard with Permutation (MDP) iteration [41] of Grøstl’s compres-
sion function, with permutation π(x) = x⊕Q−1(0`).

5.3 Barreto’s observation

Barreto [6] observed that the Grøstl compression function can be seen as an Even-Mansour
cipher [29] in Davies-Meyer mode, which is defined as f(h,m) = Em(h) ⊕ h for a block cipher
E keyed via m. In the case of Grøstl, the block cipher is defined as Ek(x) = P (k⊕ x)⊕Q(k),
where Q can be seen as a key schedule. In other words, the key is XORed with the plaintext
(pre-whitening), the resulting value is permuted, and the output is XORed with a permuted
version of the key (post-whitening).

6 Modes of use for Grøstl

Grøstl can be used in a “randomisation mode”, e.g., as a message authentication code. Such
modes include an additional input, which can be a key, a salt, a randomisation value, etc. We
believe that Grøstl is secure when used in existing randomisation modes making use of a hash
function, but we also propose a dedicated MAC mode for Grøstl.

6.1 Message authentication

HMAC [9, 74] is a method of constructing a message authentication code (MAC) from a hash
function. Given a message M , a key K and a hash function H, the HMAC construction is
defined as follows.

HMAC(K,M) = H(K ⊕ opad‖H(K ⊕ ipad‖M)),

where K is K padded to a length equal to the block length of the hash function, and ipad
and opad are two different constants as defined in [9]. HMAC has been proven to be secure if

17

the compression function of the underlying hash function is a “dual” PRF [8]. A compression
function is a dual PRF if it is a PRF when keyed via either the message block or the chaining
input. We believe HMAC based on Grøstl is a secure MAC.

The HMAC construction requires two calls to the hash function, which in the case of Grøstl
means that the output transformation must be evaluated twice. A more efficient method is the
envelope construction [88]:

MAC(K,M) = H(K‖M‖K), (2)

where M is M padded to a multiple of ` bits, and K is K padded to ` bits. We propose this
envelope construction as a dedicated MAC mode using Grøstl. This construction has been
proved to be a secure MAC under similar assumptions as HMAC [95]. For the security proof
to hold, the key must be processed in blocks that are separate from the blocks of the message
M , which explains the additional padding required.

6.2 Randomised hashing

In order to free the security of digital signatures from relying on the collision resistance of a
hash function, the input message to the hash function can be randomised using a fresh random
value z for every signature following the technique outlined in [26, 38]. The randomised message
is then processed using the hash function. This procedure is called randomised hashing. Let the
message be M , padded to a multiple of the message block length, and split into message blocks
m1, . . . ,mt. The randomised variant H̃ of the hash function H given randomisation value z is
then (roughly) defined as

H̃(z,M) = H(z‖(m1 ⊕ z)‖(m2 ⊕ z)‖ . . . ‖(mt ⊕ z)).

We believe Grøstl to be suitable for use in this randomisation mode. When Grøstl is used
in the mentioned randomisation mode, we restrict the length of the randomisation value to at
most n bits.

Being suitable for randomised hashing requires that the following attack [75] has complexity
at least 2n−k. The attacker chooses a message M of length at most 2k bits. The attacker then
receives a randomly chosen randomisation value z (not under the control of the attacker). The
value y = H̃(z,M) is computed, and the attacker’s task is now to find a pair (z∗,M∗) 6= (z,M)
such that H̃(z∗,M∗) = y. In addition, the wide-pipe mode of operation in Grøstl with an
internal state size at least twice of the digest size avoids some online birthday forgery attacks [34]
on the digital signatures based on randomised mode of Grøstl. Note that these online birthday
forgery attacks apply [34] to the digital signatures based on the randomised hash function modes
proposed in [26, 38].

6.3 Security claims for the mentioned modes of operation

We claim the following security levels for the applications where Grøstl-n is deployed. The
claimed complexity of the “randomised hashing attack” assumes a first message of at most 2k

blocks.

Attack type Claimed complexity Best known attack

Forgery on n-bit HMAC 2n/2 2n

Key recovery on n-bit HMAC 2|K| 2|K|

Forgery on n-bit envelope MAC 2n/2 2n

Key recovery on n-bit envelope MAC 2|K| 2|K|

Randomised hashing 2n−k 2n

18

7 Cryptanalytic results

In this section, we describe some preliminary cryptanalysis results on Grøstl, and we state our
security claims

7.1 Attacks exploiting properties of the permutations

We first consider well known attack methods that aim to exploit potential weaknesses in the
permutations P and Q.

7.1.1 Differential cryptanalysis

The permutations P and Q have diffusion properties according to the wide trail design strategy.
Since the MixBytes transformation has branch number 9, and ShiftBytes is diffusion optimal
(moves the bytes in each column to eight different columns), it is guaranteed that for Grøstl

there are at least 92 = 81 active s-boxes in any four-round differential trail [24, Theorem
9.5.1]. Note that this holds for Grøstl-256 as well as for Grøstl-512. Hence, there are at
least 2 · 81 = 162 and 3 · 81 = 243 active s-boxes in any eight-round, respectively twelve-round
differential trail. This, combined with the maximum difference propagation probability of the
s-box of 2−6, means that the probabilities of any differential trail (assuming independent rounds)
over eight and twelve rounds (for either P or Q) are expected to be at most 2−6·162 = 2−972,
respectively 2−1458. Therefore, in a classical differential attack where one specifies a differential
trail for every round for both P and Q, there is only a very small chance that this would lead
to a successful attack for Grøstl-256 and Grøstl-512.

In the collision attack [79] on Grindahl-256 [53], the low probability of any difference propa-
gation through the s-box is circumvented by ignoring the actual values of differences, and instead
only considering whether a byte is active or not. Since in Grindahl, a message block overwrites
part of the state, the actual values of any differences in this part of the state are irrelevant.
This approach means that the probabilistic behaviour of the hash function is now related to the
MixColumns/MixBytes transformation, since without knowing the value of an input difference,
one cannot predict the output difference. On the other hand, the number of degrees of freedom
is essentially doubled, since one does not need to consider a fixed input/output difference. The
relatively slow diffusion of Grindahl-256 combined with the continuous ability to influence the
state led to the collision attack. In the Grøstl permutations, this approach will result in a
complexity well above that of a birthday attack because diffusion is more effective (requiring
only two rounds compared to four), and the attacker does not have continuous control over parts
of the state. Moreover, since no part of the state is discarded (until the output transformation
in the end), the actual value of a difference is significant and therefore, it seems that any input
or output difference will have to (probabilistically) match a given difference.

7.1.2 Rebound attacks

The rebound attack [59, 69] is a new attack method for the cryptanalysis of hash functions.
It gives the best known results for a number of AES-based hash functions and many SHA-3
candidates [51, 52, 58, 63, 66, 68, 82, 83, 93, 94].

In general, the rebound attack works with any differential or truncated differential. However,
the diffusion properties of AES based hash functions allow a very simple construction of good
truncated differential paths, which facilitates the analysis.

The rebound attack is most successful if a high number of degrees of freedom is available.
Therefore, attacks on hash functions with a key schedule to the underlying block cipher or other

19

sources of freedom are more likely to succeed (see the attacks on ECHO [83], LANE [63] or
Whirlpool [58]). However, Grøstl has been designed to limit the degrees of freedom available
to an attacker. Moreover, in attacks on the hash function, much fewer degrees of freedom
are available (compared to an attack on the compression function or permutation). The best
attacks on the hash function for Grøstl-256 and Grøstl-512 are for 3 rounds (out of 10 and
14), respectively.

On the other hand, the best (collision) attacks on the compression functions are for 6 rounds
of Grøstl-256 and Grøstl-512. An extension of these attacks to 7 rounds might be possible.
However, more rounds seems unlikely, due to the limited degrees of freedom in the attacks.
Therefore, Grøstl still enjoys a comfortable security margin.

7.1.3 Internal differential attack

Another type of differential cryptanalysis traces differences between P and Q, instead of the
more traditional tracing of differences between pairs of inputs [80]. This method has in particular
been used in collision attacks on reduced-round versions of the Grøstl-0 hash function [43], and
in the distinguishing attacks on the compression function [80] of Grøstl-0. However, the two
permutations P and Q in Grøstl are more distinct and hence the internal differential attack
gets infeasible, even for a small number of rounds.

7.1.4 Linear cryptanalysis

Linear and differential trails propagate in a very similar way. Since the MixBytes transformation
has linear branch number 9, it is guaranteed that for Grøstl there are at least 92 = 81 active
s-boxes in any four-round linear trail [24, Theorem 9.5.1]. Hence, there are at least 2 · 81 = 162
and 3 · 81 = 243 active s-boxes in any eight-round, respectively twelve-round linear trail. Since
the s-box has maximum correlation of 2−3, the maximum correlation for any four-round linear
trial is 2−3·81 = 2−243. This means that the correlation of any linear trail over eight and twelve
rounds (for either P or Q) are expected to be at most 2−3·162 = 2−486, respectively 2−729.

7.1.5 Integrals

Some of the best known attacks on AES are based on so-called integrals [22, 54]. Integrals can
be specified also for Grøstl, and although it has not been shown how to utilise integrals in
attacks on a hash function, they might say something about the used structure.

Integrals for Grøstl-256 are very similar to integrals for AES. We have identified an integral
with 2120 texts over 6 rounds of Grøstl-256. The texts in this collection are balanced in every
byte of the input and output. Also, we identified an integral with 2120 texts over 7 rounds of
Grøstl-256. The texts in this collection are balanced in every byte of the input and balanced
in every bit of the output. These are similar to the integrals for AES reported in [54]. Note
that for AES reduced to 7 rounds, the last round is special. This is not the case for Grøstl.

For Grøstl-512 we have identified integrals for 8 and 9 rounds. For an 8-round variant the
texts are balanced in every byte of the input and output; for an 9-round variant the texts are
balanced in every byte of the input and in every bit of the output. For both these integrals, the
number of texts is 2704.

With the chosen number of rounds in the Grøstl permutations, 10 respectively 14, we
believe it is safe to conclude that integrals cannot be used to show any non-random behaviour
of Grøstl.

20

7.1.6 Algebraic cryptanalysis

It is well-known [21] that one can establish 39 quadratic equations (equations of degree two) over
F2 in the input and output bits of the AES s-box, and there is one additional quadratic equation
of probability 255

256 for the AES s-box. Hence, this is also the case for the s-box in Grøstl. There
is a total of 200 s-box applications for one encryption of the AES. Using these 40 equations
for AES, it has been shown that from a single AES encryption, one can establish a set of 8000
quadratic equations in 1600 variables (unknowns). The solution of these equations can be used
to derive the value of the secret key used in the encryption. The time complexity to solve the
above mentioned system of equations for AES is unknown; to the best of our knowledge, it has
not been shown that this can lead to an attack faster than an exhaustive search for the key.

For comparison, there is a total of 1280 s-box applications in the compression function of
Grøstl-256 and a total of 3584 s-box applications in the compression function of Grøstl-512.
It is clear that there are some advantages in an algebraic attack on a hash function compared to
a similar attack on a block cipher, since there are no secret keys in the former. However, given
that the number of s-box applications is much larger for Grøstl than for AES, we think it is
safe to conclude that if an efficient algebraic attack method should be found which exploits the
quadratic s-box equations in Grøstl, then a similar attack would be able to break the AES.

7.1.7 Zero-sum partitions

Zero-sum properties have been investigated in [4, 17, 19, 54] with cryptanalytic results on,
among others, the full Keccak permutation [13]. A zero-sum partition for an n-bit permutation
P of size 2k is a set of 2n−k zero-sums. Let R256 be the round transformation of Grøstl-256
and R512 be the round transformation of Grøstl-512 (details do not matter for our treatment
here), then we observe that the degree of the algebraic normal form (ANF) of R256 and R512

is 7. We can bound the degree of the ANF for 4 rounds of R256 with 508, and for 5 rounds of
R512 with 1022. This results in a zero-sum partition of size 2508 for the 8-round Grøstl-256
permutation and compression function and in a zero-sum partition of size 21022 for the 10-round
Grøstl-512 permutation and compression function.

7.2 Generic collision attacks

This section deals with collision attacks that do not depend on weaknesses in P and Q. We
distinguish between collision attacks on the compression function, and collision attacks on the
hash function. Collision attacks on the compression function, where the chaining input is
determined by the attack (and is not under the direct control of the attacker), cannot be
directly extended to cover the full hash function. The security proof of the construction (1)
relates to collision attacks on the hash function. Hence, we cannot rule out the possibility of
generic attacks on the compression function below the 2`/4 bound. However, there are good
reasons to believe that the bound holds also for the compression function as will be shown next.

7.2.1 Collision attacks on the compression function

Wagner’s generalised birthday attack [90] applies to the compression function f : form four
lists via the two functions fP (x) = P (x) ⊕ x and fQ(x) = Q(x) ⊕ x. Note that f(h,m) =
fP (h⊕m)⊕fQ(m). Find a quadruple (x, x∗, y, y∗) such that fP (x)⊕fP (x∗)⊕fQ(y)⊕fQ(y∗) = 0.
Then the two pairs (x⊕ y, y) and (x∗ ⊕ y∗, y∗) collide.

This attack has complexity 2`/3, and hence is faster than a birthday attack on the compres-
sion function. Note that this is still above the proven bound of 2`/4 and above the complexity of

21

a birthday attack on the hash function, since n ≤ `/2. The attack does not provide the attacker
with much control over the chaining input, and hence we do not see any methods to extend the
attack to the full hash function.

Wagner notes that if fP and fQ are considered random functions, then finding a quadruple
(x, x∗, y, y∗) such that fP (x)⊕fP (x∗)⊕fQ(y)⊕fQ(y∗) = 0 has complexity at least 2`/4. Assuming
this is correct, the complexity extends to the full hash function (where the output transformation
is omitted) via the same proof as that of the Merkle-Damg̊ard construction [25, 71].

Wagner’s generalised birthday attack is the best attack on the compression function we are
aware of. We note that in a Merkle-Damg̊ard hash function, a collision attack on the compression
function always extends to a pseudo- or free-start collision attack on the hash function. Hence,
Wagner’s generalised birthday attack can be used to carry out a free-start collision attack on
Grøstl in time 2`/3. Again, we remind the reader that this complexity is above the complexity
of a birthday attack on Grøstl.

7.2.2 Collision attacks on the hash function

The construction (1) is provably collision resistant up to the level of 2`/4 permutation calls.
Still, no collision attack of this complexity is known when the permutations are assumed to
be ideal. The best known collision attack requires 23`/8 permutation calls [32], but the true
complexity in terms of compression function call equivalents is higher than 2`/2. Hence, a large
security margin remains.

7.3 Generic attacks on the iteration

The internal state being at least twice the size of the hash value for all versions of Grøstl,
generic attacks applying to the Merkle-Damg̊ard construction cannot be applied to Grøstl

directly via brute force or birthday attacks. However, since the construction used for Grøstl

does not achieve security comparable to an ideal iterated hash function with the same internal
state size, we do not claim that generic attacks do not apply using some other methods than
the standard brute force and birthday attacks.

7.3.1 Multicollision attack

Recall that a d-collision is a set of d messages that all collide pairwise. The multicollision
attack of Joux [46] on iterated hash functions applies also to Grøstl; the complexity to find
a d-collision is roughly log2(d)2`/2 ≥ log2(d)2n. This should be compared to a brute-force
multicollision attack on the hash function for which the complexity is around (d!)1/d · 2n(d−1)/d.
For values of d and n of cryptographic relevance, the brute-force attack is always faster than
Joux’s approach.

7.3.2 Second preimage attack

The second preimage attack of Kelsey and Schneier [50] on the Merkle-Damg̊ard construction
also seems to be complicated by the large internal state size. For an n-bit iterated hash function
based on an n-bit compression function, given a first preimage of length 2k message blocks this
attack finds a second preimage of the same length in 2n−k evaluations of the compression
function. A variant of this attack was published in [2]. Using the techniques of [2, 50], the
complexity of carrying out the second preimage attack on Grøstl given a 264-block first preimage
is about 2`−64. For all the message digest sizes of Grøstl, this complexity is well above 2n−k.
Hence, our claimed security level for the second preimage resistance is at least 2n−k for any first
message of at most 2k blocks. However, we do not know of an attack with complexity below 2n.

22

7.3.3 Length extension attack

The length extension attack on Merkle-Damg̊ard hash functions works as follows. Let (M,M∗)
be a collision for the hash function H, with |M | = |M∗|. H pads M and M∗ to M and M

∗

before hashing, and by choosing any message suffix y, we have that B = M‖y and B∗ = M
∗‖y

also collide. Hence, a single collision gives rise to many new collisions that “come for free”.
The length extension method is not trivial to carry out in Grøstl, unless the messages

collide before the output transformation. Finding a collision before the output transformation
takes time 2`/2 ≥ 2n by the birthday attack. As mentioned several times, there may be collision
attacks on the hash function with the output transformation omitted, that have complexity
below the birthday attack, but we do not know of any such attack.

A related weakness of the Merkle-Damg̊ard transformation is the following. Assume the two
values H(M) and |M | are known, but M itself is not. Knowing |M |, one also knows how M
was padded, and hence for any suffix y, one may compute H(M‖y), where M is the padded
version of M , without knowing M . This weakness leads to attacks when a Merkle-Damg̊ard
hash function underlies a secret prefix MAC. In Grøstl, this attack does not seem possible due
to the output transformation.

7.4 Non-random properties of the compression function

Non-random properties of the Grøstl hash function are not known. Here we consider non-
random properties of the compression function of Grøstl. Although attacks on the compres-
sion function do not necessarily translate to the attacks on the hash function, we claim that
the Grøstl compression function is collision and (second) preimage resistant up to the level
needed for the hash function. The collision and (second) preimage resistance properties of the
compression function serve as a reassurance of the collision and preimage resistance properties
of the Grøstl hash function. On the other hand, the Grøstl compression function is known to
be non-random. Hence, the wide pipe and the strong output transformation are essential parts
of the design. Nevertheless, here we give an incomplete list of known non-random properties of
the compression function.

7.4.1 Fixed points

Most existing hash functions, for instance SHA-1 and SHA-2, are based on the Davies-Meyer
construction [64], and hence fixed points can be easily found for these hash functions [72]. Some
applications where this property can be used to attack hash functions have been identified, for
instance, in finding an expandable message to carry out the second preimage attack [28, 50].
However, finding an expandable message is only one part of the second preimage attack, and in
most cases it is not the most time-consuming task of the attack.

Fixed points can also be efficiently found for the compression function f of Grøstl: Choose
m arbitrarily, and let h = P−1(Q(m)) ⊕ m. Then f(h,m) = h. Hence, h is computed as a
(claimed) one-way function of m, and therefore is not under the direct control of the attacker.

In the case of Grøstl, we note that the internal state is at least twice the size of the hash
value, and hence the cost of constructing, e.g., an expandable message using fixed points is
expected to be about 2`/2 ≥ 2n.

7.4.2 k-sums and differential q-multicollisions

Distinguishers based on k-sums (of value zero) and differential q-multicollisions [15] are easy
to find for the compression function of Grøstl. We give one example for a 4-sum here. Let

23

H1 +H2 +H3 +H4 = 0 and H1 +H2 = M1 +M2, then f(H1,M1) + f(H2,M2) + f(H3,M1) +
f(H4,M2) = 0, which is a 4-sum of value zero. Note that this also implies H1+H2 = H3+H4 =
∆1 and f(H1,M1) + f(H2,M2) = f(H3,M1) + f(H4,M2) = ∆2 which is a differential 2-
multicollision.

7.4.3 Generalised birthday collisions

As observed in section 7.2, generalised birthday collision attack is applicable to the `-bit com-
pression function of Grøstl with a complexity of 2`/3.

7.4.4 Memoryless preimage attack

Memoryless preimage attack is applicable to the compression function of Grøstl in time 2`/2,
where ` ≥ 2n is the output size of the compression function. Note that for a given target T ,
one can compute M , X using cycle finding algorithms such that T = H+P (H+M)+Q(M) =
X + P (X) +M +Q(M) with H = X +M .

7.5 Kelsey’s observations

Kelsey [48] noted that without truncation, the Grøstl hash function does not protect against
length extension attacks, and he argues that the “P (x)⊕ x” part of the output transformation
therefore accomplishes little security. However, as explained in Section 5.1, the “P (x)⊕x” part
in the output transformation still serves an important purpose: If the output of the last iteration
of the compression function is merely truncated to form the output of the hash function, then
Wagner’s generalized birthday attack [90] on the compression function would extend to the hash
function, and it would have a complexity of 2n/3 since it can be applied to the truncated (n-bit)
hash value. With the “P (x)⊕ x” part, Wagner’s generalized birthday attack has to be applied
on an internal `-bit value, and since ` ≥ 2n, the attack has complexity above the birthday
attack on the hash function.

7.6 Security claims and summary of known attacks

With the number of rounds proposed in Section 3.4.6, we claim the following security levels for
the Grøstl-n hash function. In the second preimage attack, the first preimage is assumed to
be of length at most 2k blocks.

Attack type Claimed complexity Best known attack

Collision 2n/2 2n/2

d-collision lg(d) · 2n/2 (d!)1/d · 2n(d−1)/d
Preimage 2n 2n

Second preimage 2n−k 2n

Even though compression function attacks do not necessarily translate into attacks on the
hash function, we claim the following properties for the compression function:

Attack type Claimed complexity Best known attack

Collision 2`/4 2`/3

Preimage 2`/2 2`/2

24

8 Implementation aspects

Like Rijndael, Grøstl can be efficiently implemented on a wide variety of processors and al-
lows many trade-offs between resource requirements (memory, registers) and speed. In this
section, we describe and estimate performance and resource requirements of implementations
on 128–, 64–, 32–, and 8–bit architectures, as well as on ASICs and FPGA hardware. As
Grøstl is designed to prevent preference for a particular word size, this will also allow efficient
implementation of future architectures (like Intel’s AVX with 256-bit registers [45]).

8.1 Software implementations

In software, Grøstl is targeted 64-bit processors, but performance is nearly as good on 32-bit
processors offering MMX instructions, and we currently get the best performance on processors
using the AES-NI instruction and 128-bit XMM registers.

8.1.1 128-bit processors

Grøstl can be implemented efficiently on processors featuring wide register sizes by exploit-
ing parallelism of the round transformations. For example, the SSE instructions of modern
processors provide additional 128-bit XMM registers which can be used by various types of
Grøstl implementations. There are at least 3 different (cache-timing resistant) implementation
strategies which make use of these 128-bit registers.

AES-NI implementation. The first implementation strategy is to use the Intel AES-NI
instructions [44] to speed up the computation of Grøstl. Although Grøstl does not use the
MixColumns transformation of the AES, Grøstl can still benefit from the AES-NI instructions.
For example, we can use the AESENCLAST instruction (which computes only the last round of
AES) to compute 16 S-box lookups in parallel. If the Grøstl state is stored in row ordering,
the ShiftBytes computation of P and Q is a simple reordering of bytes and can be performed
efficiently by the PSHUFB instruction of SSSE 3. Also the MixBytes transformation of Grøstl can
be computed 16 times in parallel using XMM registers, 128-bit wide XORs and multiplications
by 2. Table 1 shows the benchmark results of an assembly implementation running on an Intel
Core i7 M620 processor with AES-NI instructions. Note that in this implementation, MixBytes
consumes about 70% of the total computation time and we expect some speed improvements
by developing a more efficient MixBytes computation.

Table 1: Grøstl performance using the Intel AES-NI instructions and 128-bit XMM registers.

Processor Hash function Speed (cycles/byte)

Intel Core i7 M620
Grøstl-224/256 12.45
Grøstl-384/512 17.85

vperm implementation. Almost the same implementation can also be used on processors
without the Intel AES-NI instructions by using the vperm (vector-permute) implementation of
Mike Hamburg [39] for the SubBytes layer. The vperm approach allows to compute 16 S-box
lookups in parallel within only a few cycles. By replacing the AESENCLAST instruction of the
AES-NI implementation with the vperm implementation, we expect a speed close to those given
in Table 1, even on processors without AES-NI instruction.

25

Bitsliced implementation. The third implementation which benefits from 128-bit XMM
registers and SSE instructions are bitsliced implementations of Grøstl. Preliminary assembly
implementations of Grøstl-0 show a speed of less than 30 cycles/byte on Intel Core2 Duo
processors for the computation of a single message [85]. Additionally, bitsliced implementations
get even more efficient if two or more messages are hashed in parallel [18].

8.1.2 64-bit processors

Grøstl can be efficiently implemented on 64-bit processors following a technique very similar
to the efficient 32-bit implementation of Rijndael [23]. Consider an implementation of the
round function of P512 focusing on the effect on column 0. Assume that the AddRoundConstant
transformation adds the byte C to a0,0. Note that the new column 0 after the round function has
been applied depends solely on the 8 bytes ai,i, 0 ≤ i < 8, because the ShiftBytes transformation
moves these bytes into column 0.

As an example, the round function has the following effect on a0,0, the new value of which
we denote by a′0,0.

a′0,0 ← 02× S(a0,0 ⊕ C)⊕ 02× S(a1,1)⊕ 03× S(a2,2)⊕ 04× S(a3,3)⊕
05× S(a4,4)⊕ 03× S(a5,5)⊕ 05× S(a6,6)⊕ 07× S(a7,7).

Similarly, the effect on a1,0 is

a′1,0 ← 07× S(a0,0 ⊕ C)⊕ 02× S(a1,1)⊕ 02× S(a2,2)⊕ 03× S(a3,3)⊕
04× S(a4,4)⊕ 05× S(a5,5)⊕ 03× S(a6,6)⊕ 05× S(a7,7).

If we continue, we see that, e.g., a0,0 affects every byte of the column by the addition of
b×S(a0,0⊕C), where b is a value from the first column of the matrix B (defined in Section 3.4.5).
Hence, when the column is represented by a 64-bit word in an implementation, we may compute
the effect of a0,0 on all bytes in the new column 0 by a single table lookup, the output of which
is exactly 8 concatenations of b× S(a0,0 ⊕ C), with b varying as defined by the matrix B. Let
the table be T0 containing 256 64-bit words. The value T0[i] at index i (ignore the addition of
C for a moment) will then be

02× S(i) ‖ 07× S(i) ‖ 05× S(i) ‖ 03× S(i) ‖ 05× S(i) ‖ 04× S(i) ‖ 03× S(i) ‖ 02× S(i),

interpreted as an 8-byte (64-bit) word. Here, we define the first byte of the word to mean the
byte of row 0 in A. In practice, the most convenient ordering depends on the endianness of
the processor (the ordering used above is more convenient on big-endian processors, whereas on
little-endian processors the byte ordering should be reversed).

A byte in a different row affects the column in a different way, and hence we must define 8
different tables T0, . . . , T7. The only difference between them is the ordering of the bytes; they
are rotated versions of each other, since the matrix B is circulant. To save space, a single table
can be used, and the rotations can be done afterwards.

To sum up, column 0 can be computed as

T0[a0,0 ⊕ C]⊕ T1[a1,1]⊕ T2[a2,2]⊕ T3[a3,3]⊕ T4[a4,4]⊕ T5[a5,5]⊕ T6[a6,6]⊕ T7[a7,7],

hence using 8 table lookups and 8 XORs (7 for all other columns, since adding C is only needed
in column 0).

When the columns are internally represented as 64-bit words, in most programming lan-
guages we don’t have direct access to the bytes ai,i, and hence we must access them by a

26

right-shift and a logical and. However, many processors provide instructions for accessing a
particular byte of a word.

We note that this technique requires storing 8 tables of 256 64-bit words, taking up 16
kilobytes of memory. As mentioned, a single table of 2 kilobytes can be used instead, but then
a rotation is needed for every 7 out of 8 table lookups. This can be generalised; with k tables,
8− k rotations are needed for every 8 table lookups. A crude estimate on the performance loss
with 0 < k ≤ 8 tables compared to 8 tables is a factor about 23−k

15 . This is based on the estimate
that a rotation, a table lookup, and an XOR take about the same time to carry out.

8.1.3 32-bit processors

On a 32-bit processor the above technique cannot be applied directly, but there is a (slower)
variant operating with 32-bit words. This method requires half the amount of memory compared
to the 64-bit implementation described above, and (roughly) twice the amount of computation.
For more details we refer to the Whirlpool specification [7]. The same time/memory trade-offs
as mentioned above are possible.

On 32-bit microprocessors with SIMD instruction sets such as MMX, SSE, or SSE2, an imple-
mentation like the one described for 64-bit processors is possible. Some overhead is introduced
compared to the implementation on a native 64-bit processor, but nevertheless, performance on
such 32-bit processors is almost as good as on a 64-bit processor. Most modern 32-bit processors
used in personal computers provide these instruction sets. These include virtually all Intel and
AMD processors since 1997.

8.1.4 8-bit processors

On 8-bit processors, the round transformations can be applied individually on a byte-by-byte
basis. Both the SubBytes and the MixBytes operation can be efficiently realised with lookups in
small tables or computed without lookup tables. Various implementation techniques that allow
a trade-off between memory usage and performance are possible. Especially in the computation
of the MixBytes operation, many intermediate results can be reused depending on the memory
requirements. Note that there is no setup time needed for the 8-bit implementation of Grøstl.

As an example for possible trade-offs, preliminary implementation results suggest that
Grøstl-256 and Grøstl-224 can be implemented with a performance of (roughly) between
450 and 550 cycles/byte on an 8-bit AVR micro-controller (ATmega163)2 using between 200
and 1000 bytes of RAM, and a code size of less than about 4KB. The code includes a 256-
byte lookup table for SubBytes and up to two 256-byte lookup tables for the multiplication
with the constant 02 and/or 04 in the finite field F256 for MixBytes. Depending on the desired
Time/Memory trade-off, more RAM can be used to speed up the computation of the S-box
lookups. On the other hand Grøstl can also be implemented very compact with a maximum of
164 bytes of RAM usage. Table 2 gives a brief overview of 3 Time/Memory trade-offs for 8-bit
implementations of Grøstl-256.

8.2 Benchmarks on PC platforms

The performance in software of the submitted optimised Grøstl implementations in C has been
tested and benchmarked on four different systems. The benchmarks presented below refer to the
hash computation of long messages. For more detailed and continuously up-to-date benchmarks
we refer to eBASH [12].

2Running at e.g., 8MHz with no operating system

27

Table 2: Grøstl performance of 8-bit implementations on the ATmega163 micro-controller. The
performance is given for different Time/Memory trade-offs long messages. Results indicated by
∗ are estimates based on an implementation for Grøstl-0.

Hash function Processor Version (state) Memory (bytes) Speed (cycles/byte)

Grøstl-256
ATmega163 high-speed (192) 994 469
ATmega163 balanced (192) 226 531
ATmega163 low-mem (128) 164 760∗

The following implementations were benchmarked (Grøstl-384/512 has not yet been imple-
mented in all of these versions).

Name Short name Language

Optimized 64-bit o64 C
Optimized 32-bit o32 C
sphlib3adapted to tweaked Grøstl sphlib C
MMX intrinsics mmx C with MMX intrinsics
Optimized for Core 2 Duo c2d C with inline assembly
Optimized for Opteron opt C with inline assembly
Optimized for Opteron, rounds unrolled optunr C with inline assembly
Optimized for AES-NI aesni C with inline assembly

Additional implementations are under development; examples are bitsliced and vperm imple-
mentations using the SSE3 and SSE4.1 instruction sets. We expect that these implementations
have similar performances as the implementations of Grøstl-0.

8.2.1 System I

This system consists of an Intel Core 2 Duo E4600 processor running at 2.40 GHz. The op-
erating system is Ubuntu 10.10. The installed compilers are gcc v.4.4.5 and Intel’s C com-
piler (icc) v.12.0.0.084. The optimisation flags used varied, but included -O3, -fno-regmove,
-fmodulo-sched for gcc, and -fast and -O1 -xHost for icc.

On this system, the benchmarked implementations are opt64, c2d, opt (since no c2d impl.
was developed for Grøstl-384/512 yet), and sphlib. The benchmarks are sorted by their speed
presented below.

3Based on the Grøstl-0 implementations from sphlib v.2.1, http://www.saphir2.com/sphlib/

28

http://www.saphir2.com/sphlib/

Hash function Compiler Implementation Speed (cycles/byte)

Grøstl-224/256

icc c2d 22.5
gcc c2d 22.5
gcc opt64 25.7
icc opt64 26.4
gcc sphlib 28.5
icc sphlib 29.0

Grøstl-384/512

gcc opt 37.4
icc opt 37.4
icc sphlib 42.8
icc opt64 43.1
gcc opt64 45.6
gcc sphlib 47.4

8.2.2 System II

This system consists of an Intel Core i7 M620 processor running at 2.67 GHz. The operating
system is Debian 5.0. The installed compiler is gcc v.4.4.5. The optimisation flags used varied,
but included -O3, -fno-regmove, and -fmodulo-sched.

On this system, the benchmarked implementations are aesni, opt64, mmx, c2d, opt optunr,
and sphlib. The benchmarks are sorted by their speed and presented below.

Hash function Compiler Implementation Speed (cycles/byte)

Grøstl-224/256

gcc aesni 12.8
gcc optunr 19.5
gcc opt 20.9
gcc c2d 20.9
gcc opt64 22.6
gcc sphlib 25.1

Grøstl-384/512

gcc aesni 18.2
gcc opt 32.8
gcc sphlib 41.3
gcc opt64 57.3
gcc c2d -
gcc optunr -

8.2.3 System III

This system consists of an AMD Opteron 6168 processor running at 1.9 GHz. The operating
system is Red Hat Linux v.4.1.2-48. The installed compiler is gcc v.4.1.2. The optimisation flags
used were always a combination of -O3, -fno-regmove, -fmodulo-sched, and -funroll-loops.

The benchmarked implementations are opt64, opt, optunr (not implemented for Grøstl-
384/512), and sphlib. The benchmarks are presented below.

29

Hash function Compiler Implementation Speed (cycles/byte)

Grøstl-224/256

gcc optunr 19.5
gcc opt 20.7
gcc sphlib 31.1
gcc opt64 31.6

Grøstl-384/512
gcc opt 32.1
gcc sphlib 45.7
gcc opt64 48.6

8.2.4 System IV

This system consists of an Intel Pentium M 760 processor running at 2.0 GHz. The operating
system is Ubuntu 10.04. The installed compilers are gcc v.4.4.3 and icc v.12.0.1.107. The
optimisation flags used were -O3, -fno-regmove, -fmodulo-sched, and -msse for gcc, and
-O3 -xHost and -O3 -msse2 for icc.

The implementations that were benchmarked are opt32, sphlib, and mmx. The benchmarks
are presented below.

Hash function Compiler Implementation Speed (cycles/byte)

Grøstl-224/256

icc mmx 40.0
gcc mmx 43.9
icc sphlib 66.5
gcc sphlib 80.8
icc opt32 90.3
gcc opt32 92.7

Grøstl-384/512

icc mmx 79.0
icc sphlib 94.1
gcc sphlib 112.8
icc opt32 124.8
gcc opt32 126.6

We expect that Grøstl-384/512 implementations can be improved significantly on this proces-
sor. Theoretically, one would expect Grøstl-384/512 to be running about 40% slower than
Grøstl-224/256, although factors such as program code size etc. may be a cause for deviations
from this estimate.

8.3 Hardware implementations

Potential settings and scenarios for hardware implementations can be at least as diverse as for
software implementations. The many different ways to implement Grøstl allows for a wide
range of trade-offs between throughput, latency, gate count, power consumption, etc[5, 10, 33,
40, 42, 47, 55, 86, 87]. Grøstl can be implemented efficiently on architectures with data paths
starting from 8-bit up to 1024-bit. In the following, we briefly discuss estimates in various
settings.

8.3.1 Low-gate count implementations

To illustrate the multitude of different implementation trade-off possibilities the design offers, we
consider implementations where very small area requirements and very low-power requirements
are important.

30

We estimate that Grøstl-256 and Grøstl-224 can be implemented on an ASIC with standard-
cell libraries requiring an area of less than 15000 gate equivalents (GE). The dominating factor
here is the memory. We use 12390 GE for register-based RAM in our estimate instead of RAM
hard-macros. Since low gate count implementations are usually also low-power implementa-
tions, the register-based RAM can be used to minimise power consumption by clock gating.
We base our estimates on numbers obtained from actual implementations of the AES and other
algorithms [30, 31]. This results in 354 GE for the SubBytes and 800 GE for the MixBytes
transformation of Grøstl-256. Table 3 gives an overview for all Grøstl variants.

Table 3: Estimates for a low-power architecture with an 8-bit data path implementation of
Grøstl, that also has a low gate count.

Part GE
Grøstl-224/256 Grøstl-384/512

RAM 12390 24780
SubBytes 354 354
MixBytes 800 800
Others (conservative) 1400 2000

Sum < 15000 < 28000

8.3.2 High-throughput implementations

High-throughput implementations of Grøstl can be developed using data paths up to 512 or
1024 bit. Further, the execution of the two permutations can be implemented in parallel or
pipelined and interleaved. This results in 1 cycle per round and 10 or 14 cycles per compression
function computation. As an example, looking at implementation results of Grøstl-0, even on
old and cheap manufacturing processes with 180nm structure size more than 6 Gbit/sec with a
modest area requirement of less than 60kGE can be achieved.

8.4 Implementation attacks

Whenever a key is handled by a machine that implements a cryptographic mechanism in addition
to inputs and outputs, various side-channel information may be available to an attacker. Sources
for such side-channels can be (but are not limited to) timing information, power consumption
and electromagnetic emanations, error messages, etc.

8.4.1 Cache based timing attacks

Cache based timing attacks have been mentioned, discussed and investigated in [11, 14, 56, 78,
89]. Bitslicing or vector-permute [39] techniques applied to Grøstl, as well as the Intel AES-NI
instructions allow for implementations that are resistant against cache based timing attacks
(also see Section 8.1.1). Note that bitslicing implementations are actually the fastest AES
implementations on many modern platforms. Also for bitsliced implementations of Grøstl, the
expected overhead is only about 50% compared to the table-based approach (estimate based
on bitsliced implementations of Grøstl-0). Furthermore, the Intel AES-NI implementation of
Grøstl is the fastest Grøstl implementation so far and vector-permute based implementations
are expected to have very little performance overhead as well.

31

8.4.2 Power- and EM side-channel attacks

Published in 1999 [57], side-channel attacks that exploit information from the power consump-
tion in the form of differential power analysis (DPA) attacks and electromagnetic emanations
turn out to be a real threat for many implementations. Many generic (e.g., dual-rail logic)
countermeasures and countermeasures specialised for particular algorithms have been proposed
since then. Again, the similarity of our proposal to the AES allows to reuse many ideas from
previous work.

Popular MAC implementations such as HMAC-SHA-1 and HMAC-SHA-2 have been exposed
to DPA attacks [60, 65]. MACs constructed using block cipher based hash functions can be
analysed against side channel attacks by assuming that the block cipher or the compression
function is side channel resistant. Under this assumption, DPA attacks on several hash function
based MACs including HMAC instantiated with the provably secure block cipher based hash
functions were demonstrated in [35, 36, 77]. For the MAC modes of Grøstl, we note that these
observations do not seem to be directly applicable.

8.4.3 On countermeasures

The in Section 8.4.1 mentioned work on constant-time implementations of AES, and the huge
body of work on countermeasures against power- and EM side-channel attacks (see e.g., [61]
for a good overview) which is also primarily applied to AES, give a sound basis to counter
implementation attacks. On top of that, instruction set extensions that are frequently proposed
by CPU manufacturers may be used as well. Preliminary implementation results (see also
Section 8.1.1) suggest that the new crypto-related instructions, which Intel introduced in their
CPUs [44], can efficiently be used to implement Grøstl in a constant-time manner and hence
resistant against timing attacks. This yet again serves as a powerful illustration for the many
ways Grøstl can be implemented.

9 Conclusion

The SHA-3 candidate Grøstl has been proposed. Grøstl is a permutation-based hash function,
based on a construction which is provably collision resistant when the permutations are assumed
to be ideal. The particular permutations used in Grøstl are based on components of the Rijndael
block cipher. As an effect of this, Grøstl has excellent diffusion and confusion properties. The
design of Grøstl is very simple and easy to understand. Therefore, it is relatively easy to identify
possible attacks and thereby easy to gain confidence in the strength of the construction. We
believe that Grøstl is a very strong hash function, yet it can be efficiently implemented on a
wide range of platforms. Reference and optimised implementations, test vectors, this document
and other information on Grøstl is available at [37].

Acknowledgements

A number of people contributed or influenced this proposal in some way. Here we want to thank
them (in alphabetical order).

Zoran Milinkovic, for discussions on his implementations of earlier versions of the design.
Thomas Peyrin, for discussions on early design considerations. Vincent Rijmen, for insightful
comments on various aspects of the design. Günther Roland, for the AES-NI and 8-bit im-
plementations of Grøstl. Stefan Tillich, for discussion on many implementation aspects, and
having an influential role in the selection of the MixBytes and ShiftBytesWide transformations.

32

Jürgen Windhaber, for discussions on his implementations of earlier versions of the design.
Sébastien Zimmer, for providing us an early version of [32].

33

References

[1] R. J. Anderson and E. Biham. TIGER: A Fast New Hash Function. In D. Gollmann, editor,
Fast Software Encryption 1996, Proceedings, volume 1039 of Lecture Notes in Computer
Science, pages 89–97. Springer, 1996.

[2] E. Andreeva, C. Bouillaguet, P.-A. Fouque, J. J. Hoch, J. Kelsey, A. Shamir, and S. Zimmer.
Second Preimage Attacks on Dithered Hash Functions. In N. Smart, editor, Advances in
Cryptology – EUROCRYPT 2008, Proceedings, volume 4965 of Lecture Notes in Computer
Science, pages 270–288. Springer, 2008.

[3] E. Andreeva, B. Mennink, and B. Preneel. On the Indifferentiability of the Grøstl Hash
Function. In J. A. Garay and R. D. Prisco, editors, Security and Cryptography for Networks,
7th International Conference, SCN, volume 6280 of Lecture Notes in Computer Science,
pages 88–105. Springer, 2010.

[4] J.-P. Aumasson and W. Meier. Zero-sum distinguishers for reduced Keccak-f and for the
core functions of Luffa and Hamsi. NIST mailing list, 2009.

[5] B. Baldwin, A. Byrne, M. Hamilton, N. Hanley, R. P. McEvoy, W. Pan, and W. P.
Marnane. FPGA Implementations of SHA-3 Candidates:CubeHash, Grøstl, Lane, Sha-
bal and Spectral Hash. Cryptology ePrint Archive, Report 2009/342, 2009. http:

//eprint.iacr.org/2009/342 (2011/01/15).

[6] P. S. L. M. Barreto. An observation on Grøstl. Comment submitted to the NIST
hash function mailing list, hash-forum@nist.gov. Available: http://www.larc.usp.br/

~pbarreto/Grizzly.pdf (2011/01/15), 2008.

[7] P. S. L. M. Barreto and V. Rijmen. The Whirlpool Hashing Function. Submitted to
NESSIE, September 2000 and Adopted in the ISO/IEC 10118-3:2004. Revised May 2003.
Available: http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html (2011/01/15).

[8] M. Bellare. New Proofs for NMAC and HMAC: Security Without Collision-Resistance. In
C. Dwork, editor, Advances in Cryptology – CRYPTO 2006, Proceedings, volume 4117 of
Lecture Notes in Computer Science, pages 602–619. Springer, 2006.

[9] M. Bellare, R. Canetti, and H. Krawczyk. Keying Hash Functions for Message Authenti-
cation. In N. Koblitz, editor, Advances in Cryptology – CRYPTO ’96, Proceedings, volume
1109 of Lecture Notes in Computer Science, pages 1–15. Springer, 1996.

[10] J. A. Bernhard Jungk, Steffen Reith. On Optimized FPGA Implementations of the SHA-3
Candidate Grostl. Cryptology ePrint Archive, Report 2009/206, 2009. http://eprint.

iacr.org/2009/206(2011/01/15).

[11] D. J. Bernstein. Cache-timing attacks on AES. Available: http://cr.yp.to/

antiforgery/cachetiming-20050414.pdf (2010/01/15).

[12] D. J. Bernstein and T. Lange (editors). eBACS: ECRYPT Benchmarking of Cryptographic
Systems. http://bench.cr.yp.to (accessed 16 January, 2011).

[13] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Keccak sponge function family,
June 2010. SHA-3 candidate. Available: http://keccak.noekeon.org/Keccak-main-2.

1.pdf(2011/01/15).

34

http://eprint.iacr.org/2009/342
http://eprint.iacr.org/2009/342
hash-forum@nist.gov
http://www.larc.usp.br/~pbarreto/Grizzly.pdf
http://www.larc.usp.br/~pbarreto/Grizzly.pdf
http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
http://eprint.iacr.org/2009/206
http://eprint.iacr.org/2009/206
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://bench.cr.yp.to
http://keccak.noekeon.org/Keccak-main-2.1.pdf
http://keccak.noekeon.org/Keccak-main-2.1.pdf

[14] G. Bertoni, V. Zaccaria, L. Breveglieri, M. Monchiero, and G. Palermo. AES Power Attack
Based on Induced Cache Miss and Countermeasure. In International Conference on In-
formation Technology: Coding and Computing (ITCC 2005), Proceedings, volume 1, pages
586–591. IEEE Computer Society, April 2005.

[15] A. Biryukov, D. Khovratovich, and I. Nikolić. Distinguisher and Related-Key Attack on the
Full AES-256. In S. Halevi, editor, Advances in Cryptology – CRYPTO 2009, Proceedings,
volume 5677 of Lecture Notes in Computer Science, pages 231–249. Springer, 2009.

[16] J. Black, P. Rogaway, and T. Shrimpton. Black-Box Analysis of the Block-Cipher-Based
Hash-Function Constructions from PGV. In M. Yung, editor, Advances in Cryptology –
CRYPTO 2002, Proceedings, volume 2442 of Lecture Notes in Computer Science, pages
320–335. Springer, 2002.

[17] C. Boura, A. Canteaut, and C. D. Cannière. Higher-order differential properties of Keccak
and Luffa. Cryptology ePrint Archive, Report 2010/589, 2010. http://eprint.iacr.org/
2010/589/(2011/01/15).

[18] Çaŏdaş Çalik. Multi-stream and Constant-time SHA-3 Implementations, 2010. Available
online: http://www.metu.edu.tr/~ccalik/software.html#sha3 (2010/01/12).

[19] A. C. Christina Boura. Zero-Sum Distinguishers for Iterated Permutations and Application
to Keccak-f and Hamsi-256. In SAC, LNCS. Springer, 2010. To appear.

[20] J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damg̊ard Revisited: How to
Construct a Hash Function. In V. Shoup, editor, Advances in Cryptology – CRYPTO 2005,
Proceedings, volume 3621 of Lecture Notes in Computer Science, pages 430–448. Springer,
2005.

[21] N. Courtois and J. Pieprzyk. Cryptanalysis of Block Ciphers with Overdefined Systems of
Equations. In Y. Zheng, editor, Advances in Cryptology – ASIACRYPT 2002, Proceedings,
volume 2501 of Lecture Notes in Computer Science, pages 267–287. Springer, 2002.

[22] J. Daemen, L. R. Knudsen, and V. Rijmen. The Block Cipher Square. In E. Biham, editor,
Fast Software Encryption 1997, Proceedings, volume 1267 of Lecture Notes in Computer
Science, pages 149–165. Springer, 1997.

[23] J. Daemen and V. Rijmen. AES Proposal: Rijndael. AES Algorithm Submis-
sion, September 1999. Available: http://csrc.nist.gov/archive/aes/rijndael/

Rijndael-ammended.pdf (2011/01/15).

[24] J. Daemen and V. Rijmen. The Design of Rijndael. Springer, 2002.

[25] I. Damg̊ard. A Design Principle for Hash Functions. In G. Brassard, editor, Advances in
Cryptology – CRYPTO ’89, Proceedings, volume 435 of Lecture Notes in Computer Science,
pages 416–427. Springer, 1990.

[26] Q. Dang. Randomized Hashing for Digital Signatures, 2009. Available:http://csrc.nist.
gov/publications/PubsSPs.html (2011/01/13).

[27] C. De Cannière and C. Rechberger. Finding SHA-1 Characteristics: General Results and
Applications. In X. Lai and K. Chen, editors, Advances in Cryptology – ASIACRYPT 2006,
Proceedings, volume 4284 of Lecture Notes in Computer Science, pages 1–20. Springer, 2006.

35

http://eprint.iacr.org/2010/589/
http://eprint.iacr.org/2010/589/
http://www.metu.edu.tr/~ccalik/software.html#sha3
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/publications/PubsSPs.html
http://csrc.nist.gov/publications/PubsSPs.html

[28] R. D. Dean. Formal Aspects of Mobile Code Security. PhD thesis, Princeton University,
January 1999.

[29] S. Even and Y. Mansour. A Construction of a Cipher from a Single Pseudorandom Per-
mutation. Journal of Cryptology, 10(3):151–162, 1997.

[30] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer. Strong Authentication for RFID Sys-
tems Using the AES Algorithm. In M. Joye and J.-J. Quisquater, editors, Cryptographic
Hardware and Embedded Systems – CHES 2004, Proceedings, volume 3156 of Lecture Notes
in Computer Science, pages 357–370. Springer, 2004.

[31] M. Feldhofer and C. Rechberger. A Case Against Currently Used Hash Functions in RFID
Protocols. In R. Meersman, Z. Tari, and P. Herrero, editors, OTM Workshops (1), volume
4277 of Lecture Notes in Computer Science, pages 372–381. Springer, 2006.

[32] P.-A. Fouque, J. Stern, and S. Zimmer. Cryptanalysis of Tweaked Versions of SMASH and
Reparation. In R. Avanzi, L. Keliher, and F. Sica, editors, Selected Areas in Cryptography
2008, Proceedings, volume 5381 of Lecture Notes in Computer Science, pages 136–150.
Springer, 2009.

[33] K. Gaj, E. Homsirikamol, and M. Rogawski. Fair and Comprehensive Methodology for
Comparing Hardware Performance of Fourteen Round Two SHA-3 Candidates Using FP-
GAs. In Mangard and Standaert [62], pages 264–278.

[34] P. Gauravaram and L. R. Knudsen. On randomizing hash functions to strengthen the secu-
rity of digital signatures. In A. Joux, editor, Advances in Cryptology – EUROCRYPT 2009,
Proceedings, volume 5479 of Lecture Notes in Computer Science, pages 88–105. Springer,
2009.

[35] P. Gauravaram and K. Okeya. An Update on the Side Channel Cryptanalysis of MACs
Based on Cryptographic Hash Functions. In Progress in Cryptology – INDOCRYPT 2007,
Proceedings, volume 4859 of Lecture Notes in Computer Science, pages 393–403. Springer,
2007.

[36] P. Gauravaram and K. Okeya. Side Channel Analysis of Some Hash Function Based MACs:
A Response to SHA-3 Requirements. In L. Chen, M. D. Ryan, and G. Wang, editors,
International Conference on Information and Communications Security – ICICS 2008,
Proceedings, volume 5308 of Lecture Notes in Computer Science, pages 111–127. Springer,
2008.

[37] The Grøstl web page. http://www.groestl.info.

[38] S. Halevi and H. Krawczyk. Strengthening Digital Signatures Via Randomized Hashing.
In C. Dwork, editor, Advances in Cryptology – CRYPTO 2006, Proceedings, volume 4117
of Lecture Notes in Computer Science, pages 41–59. Springer, 2006.

[39] M. Hamburg. Accelerating AES with Vector Permute Instructions. In CHES, volume 5747
of Lecture Notes in Computer Science, pages 18–32. Springer, 2009.

[40] L. Henzen, P. Gendotti, P. Guillet, E. Pargaetzi, M. Zoller, and F. K. Gürkaynak. Devel-
oping a Hardware Evaluation Method for SHA-3 Candidates. In Mangard and Standaert
[62], pages 248–263.

36

http://www.groestl.info

[41] S. Hirose, J. H. Park, and A. Yun. A Simple Variant of the Merkle-Damg̊ard Scheme with
a Permutation. In K. Kurosawa, editor, Advances in Cryptology – ASIACRYPT 2007,
Proceedings, volume 4833 of Lecture Notes in Computer Science, pages 113–129. Springer,
2007.

[42] E. Homsirikamol, M. Rogawski, and K. Gaj. Comparing Hardware Performance of Four-
teen Round Two SHA-3 Candidates Using FPGAs. Cryptology ePrint Archive, Report
2010/445, 2010. http://eprint.iacr.org/2010/445(2011/01/15).

[43] K. Ideguchi, E. Tischhauser, and B. Preneel. Improved collision attacks on the reduced-
round Grøstl hash function. In M. Burmester, G. Tsudik, S. Magliveras, and I. Ilic, editors,
Information Security Conference (ISC) 2010, Proceedings, volume 6531 of Lecture Notes
in Computer Science. Springer, 2011. To appear.

[44] Intel Corporation. Advanced Encryption Standard (AES) Instructions Set. Available:
http://softwarecommunity.intel.com/articles/eng/3788.htm (2008/10/30).

[45] Intel Corporation. Intel AVX: New Frontiers in Performance Improvements and Energy
Efficiency. Available: http://softwarecommunity.intel.com/articles/eng/3775.htm

(2008/10/30).

[46] A. Joux. Multicollisions in Iterated Hash Functions. Application to Cascaded Construc-
tions. In M. K. Franklin, editor, Advances in Cryptology – CRYPTO 2004, Proceedings,
volume 3152 of Lecture Notes in Computer Science, pages 306–316. Springer, 2004.

[47] B. Jungk and S. Reith. On FPGA-based implementations of Grøstl. Cryptology ePrint
Archive, Report 2010/260, 2010. http://eprint.iacr.org/2010/260(2011/01/15).

[48] J. Kelsey. Some notes on Grøstl. Comment submitted to the NIST hash function mailing
list, hash-forum@nist.gov. Available: http://ehash.iaik.tugraz.at/uploads/d/d0/

Grostl-comment-april28.pdf (2011/01/15), 2009.

[49] J. Kelsey and S. Lucks. Collisions and Near-Collisions for Reduced-Round Tiger. In
M. J. B. Robshaw, editor, Fast Software Encryption 2006, Proceedings, volume 4047 of
Lecture Notes in Computer Science, pages 111–125. Springer, 2006.

[50] J. Kelsey and B. Schneier. Second Preimages on n-Bit Hash Functions for Much Less than
2n Work. In R. Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, Proceedings,
volume 3494 of Lecture Notes in Computer Science, pages 474–490. Springer, 2005.

[51] D. Khovratovich, I. Nikolic, and C. Rechberger. Rotational Rebound Attacks on Reduced
Skein. In M. Abe, editor, Advances in Cryptology – ASIACRYPT 2010, Proceedings, volume
6477 of Lecture Notes in Computer Science, pages 1–19. Springer, 2010.

[52] D. Khovratovich, I. Nikolic, and C. Rechberger. Rotational Rebound Attacks on Reduced
Skein. In M. Abe, editor, Advances in Cryptology – ASIACRYPT 2010, Proceedings, volume
6477 of Lecture Notes in Computer Science, pages 1–19. Springer, 2010.

[53] L. R. Knudsen, C. Rechberger, and S. S. Thomsen. The Grindahl Hash Functions. In
A. Biryukov, editor, Fast Software Encryption 2007, Proceedings, volume 4593 of Lecture
Notes in Computer Science, pages 39–57. Springer, 2007.

[54] L. R. Knudsen and V. Rijmen. Known-Key Distinguishers for Some Block Ciphers. In
K. Kurosawa, editor, Advances in Cryptology – ASIACRYPT 2007, Proceedings, volume
4833 of Lecture Notes in Computer Science, pages 315–324. Springer, 2007.

37

http://eprint.iacr.org/2010/445
http://softwarecommunity.intel.com/articles/eng/3788.htm
http://softwarecommunity.intel.com/articles/eng/3775.htm
http://eprint.iacr.org/2010/260
hash-forum@nist.gov
http://ehash.iaik.tugraz.at/uploads/d/d0/Grostl-comment-april28.pdf
http://ehash.iaik.tugraz.at/uploads/d/d0/Grostl-comment-april28.pdf

[55] K. Kobayashi, J. Ikegami, S. Matsuo, K. Sakiyama, and K. Ohta. Evaluation of hardware
performance for the sha-3 candidates using sasebo-gii. Cryptology ePrint Archive, Report
2010/010, 2010. http://eprint.iacr.org/2010/010(2011/01/15).

[56] P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems. In N. Koblitz, editor, Advances in Cryptology – CRYPTO ’96, Proceedings,
number 1109 in Lecture Notes in Computer Science, pages 104–113. Springer, 1996.

[57] P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Advances in Cryptology
– CRYPTO ’99, Proceedings, volume 1666 of Lecture Notes in Computer Science, pages
388–397. Springer, 1999.

[58] M. Lamberger, F. Mendel, C. Rechberger, V. Rijmen, and M. Schläffer. Rebound Dis-
tinguishers: Results on the Full Whirlpool Compression Function. In M. Matsui, editor,
Advances in Cryptology – ASIACRYPT 2009, Proceedings, volume 5912 of Lecture Notes
in Computer Science, pages 126–143. Springer, 2009.

[59] M. Lamberger, F. Mendel, C. Rechberger, V. Rijmen, and M. Schlffer. The Rebound Attack
and Subspace Distinguishers: Application to Whirlpool. Cryptology ePrint Archive, Report
2010/198, 2010. http://eprint.iacr.org/2010/198(2011/01/15).

[60] K. Lemke, K. Schramm, and C. Paar. DPA on n-bit sized boolean and arithmetic oper-
ations and its application to IDEA, RC6, and the HMAC-construction. In Cryptographic
Hardware and Embedded Systems – CHES 2004, Proceedings, volume 3156 of Lecture Notes
in Computer Science, pages 205–219. Springer, 2004.

[61] S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks – Revealing the Secrets of
Smart Cards. Springer, 2007.

[62] S. Mangard and F.-X. Standaert, editors. Cryptographic Hardware and Embedded Systems,
CHES 2010, 12th International Workshop, Santa Barbara, CA, USA, August 17-20, 2010.
Proceedings, volume 6225 of Lecture Notes in Computer Science. Springer, 2010.

[63] K. Matusiewicz, M. Naya-Plasencia, I. Nikolić, Y. Sasaki, and M. Schläffer. Rebound Attack
on the Full LANE Compression Function. In M. Matsui, editor, Advances in Cryptology –
ASIACRYPT 2009, Proceedings, volume 5912 of Lecture Notes in Computer Science, pages
106–125. Springer, 2009.

[64] S. M. Matyas, C. H. Meyer, and J. Oseas. Generating strong one-way functions with
crypographic algorithm. IBM Technical Disclosure Bulletin, 27(10A):5658–5659, 1985.

[65] R. P. McEvoy, M. Tunstall, C. C. Murphy, and W. P. Marnane. Differential Power Analysis
of HMAC Based on SHA-2, and Countermeasures. In Workshop on Information Security
Applications – WISA 2007, Revised Selected Papers, volume 4867 of Lecture Notes in
Computer Science, pages 317–332. Springer, 2007.

[66] F. Mendel, T. Peyrin, C. Rechberger, and M. Schläffer. Improved Cryptanalysis of the Re-
duced Grøstl Compression Function, ECHO Permutation and AES Block Cipher. In M. J.
Jacobson, V. Rijmen, and R. Safavi-Naini, editors, Selected Areas in Cryptography 2009,
Proceedings, volume 5867 of Lecture Notes in Computer Science, pages 16–35. Springer,
2009.

38

http://eprint.iacr.org/2010/010
http://eprint.iacr.org/2010/198

[67] F. Mendel, B. Preneel, V. Rijmen, H. Yoshida, and D. Watanabe. Update on Tiger. In
R. Barua and T. Lange, editors, Progress in Cryptology – INDOCRYPT 2006, Proceedings,
volume 4329 of Lecture Notes in Computer Science, pages 63–79. Springer, 2006.

[68] F. Mendel, C. Rechberger, and M. Schläffer. Cryptanalysis of Twister. In M. Abdalla,
D. Pointcheval, P.-A. Fouque, and D. Vergnaud, editors, Applied Cryptography and Network
Security 2009, Proceedings, volume 5536 of Lecture Notes in Computer Science, pages 342–
353. Springer, 2009.

[69] F. Mendel, C. Rechberger, M. Schläffer, and S. S. Thomsen. The Rebound Attack: Crypt-
analysis of Reduced Whirlpool and Grøstl. In O. Dunkelman, editor, Fast Software En-
cryption 2009, Proceedings, volume 5665 of Lecture Notes in Computer Science, pages
260–276. Springer, 2009.

[70] F. Mendel and V. Rijmen. Cryptanalysis of the Tiger Hash Function. In K. Kurosawa,
editor, Advances in Cryptology – ASIACRYPT 2007, Proceedings, volume 4833 of Lecture
Notes in Computer Science, pages 536–550. Springer, 2007.

[71] R. C. Merkle. One Way Hash Functions and DES. In G. Brassard, editor, Advances in
Cryptology – CRYPTO ’89, Proceedings, volume 435 of Lecture Notes in Computer Science,
pages 428–446. Springer, 1990.

[72] S. Miyaguchi, K. Ohta, and M. Iwata. Confirmation that Some Hash Functions Are Not
Collision Free. In I. Damg̊ard, editor, Advances in Cryptology – EUROCRYPT ’90, Pro-
ceedings, volume 473 of Lecture Notes in Computer Science, pages 326–343. Springer, 1991.

[73] National Institute of Standards and Technology. FIPS PUB 180-2, Secure Hash Stan-
dard. Federal Information Processing Standards Publication 180-2, U.S. Department of
Commerce, August 2002.

[74] National Institute of Standards and Technology. FIPS PUB 198, The Keyed-Hash Message
Authentication Code (HMAC). Federal Information Processing Standards Publication 198,
U.S. Department of Commerce, March 2002.

[75] National Institute of Standards and Technology. Announcing Request for Candidate Algo-
rithm Nominations for a New Cryptographic Hash Algorithm (SHA-3) Family. Federal Reg-
ister, 27(212):62212–62220, November 2007. Available: http://csrc.nist.gov/groups/

ST/hash/documents/FR_Notice_Nov07.pdf (2011/01/15).

[76] K. Nyberg. Differentially uniform mappings for cryptography. In T. Helleseth, editor,
Advances in Cryptology – EUROCRYPT ’93, volume 765 of Lecture Notes in Computer
Science, pages 55–64. Springer, 1994.

[77] K. Okeya. Side Channel Attacks Against HMACs Based on Block-Cipher Based Hash
Functions. In Australasian Conference on Information Security and Privacy – ACISP
2006, Proceedings, volume 4058 of Lecture Notes in Computer Science, pages 432–443.
Springer, 2006.

[78] D. Page. Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel. Tech-
nical Report CSTR-02-003, University of Bristol, Department of Computer Science,
June 2002. Available: http://www.cs.bris.ac.uk/Publications/Papers/1000625.pdf
(2011/01/15).

39

http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://www.cs.bris.ac.uk/Publications/Papers/1000625.pdf

[79] T. Peyrin. Cryptanalysis of Grindahl. In K. Kurosawa, editor, Advances in Cryptology –
ASIACRYPT 2007, Proceedings, volume 4833 of Lecture Notes in Computer Science, pages
551–567. Springer, 2007.

[80] T. Peyrin. Improved Differential Attacks for ECHO and Grøstl. In T. Rabin, editor,
Advances in Cryptology – CRYPTO 2010, Proceedings, volume 6223 of Lecture Notes in
Computer Science, pages 370–392. Springer, 2010.

[81] B. Preneel, R. Govaerts, and J. Vandewalle. Hash Functions Based on Block Ciphers: A
Synthetic Approach. In D. R. Stinson, editor, Advances in Cryptology – CRYPTO ’93,
Proceedings, volume 773 of Lecture Notes in Computer Science, pages 368–378. Springer,
1994.

[82] V. Rijmen, D. Toz, and K. Varici. Rebound Attack on Reduced-Round Versions of JH. In
S. Hong and T. Iwata, editors, Fast Software Encryption 2010, Proceedings, volume 6147
of Lecture Notes in Computer Science, pages 286–303. Springer, 2010.

[83] M. Schläffer. Improved Collisions for Reduced ECHO-256. Cryptology ePrint Archive,
Report 2010/588, 2010. http://eprint.iacr.org/.

[84] S. Tessaro. Personal communication, August 2009.

[85] S. Tillich. Bitsliced Implementation of Grøstl-256 without tweak, 2008. Personal commu-
nication, implementation written by Stefan Tillich and benchmarked in eBash.

[86] S. Tillich, M. Feldhofer, W. Issovits, T. Kern, H. Kureck, M. Mühlberghuber, G. Neubauer,
A. Reiter, A. Köfler, and M. Mayrhofer. Compact Hardware Implementations of the SHA-3
Candidates ARIRANG, BLAKE, Grøstl, and Skein. Cryptology ePrint Archive, Report
2009/349, 2009. http://eprint.iacr.org/2009/349(2011/01/15).

[87] S. Tillich, M. Feldhofer, M. Kirschbaum, T. Plos, J.-M. Schmidt, and A. Szekely.
High-Speed Hardware Implementations of BLAKE, Blue Midnight Wish, CubeHash,
ECHO, Fugue, Grøstl, Hamsi, JH, Keccak, Luffa, Shabal, SHAvite-3, SIMD, and Skein.
Cryptology ePrint Archive, Report 2009/510, 2009. http://eprint.iacr.org/2009/

510(2011/01/15).

[88] G. Tsudik. Message Authentication with One-Way Hash Functions. In INFOCOM ’92,
Proceedings, pages 2055–2059, 1992.

[89] Y. Tsunoo, E. Tsujihara, K. Minematsu, and H. Miyauchi. Cryptanalysis of Block Ciphers
Implemented on Computers with Cache. In International Symposium on Information The-
ory and Its Applications (ISITA 2002), Proceedings, October 2002.

[90] D. Wagner. A Generalized Birthday Problem. In M. Yung, editor, Advances in Cryptology
– CRYPTO 2002, Proceedings, volume 2442 of Lecture Notes in Computer Science, pages
288–303. Springer, 2002.

[91] X. Wang, Y. L. Yin, and H. Yu. Finding Collisions in the Full SHA-1. In V. Shoup, editor,
Advances in Cryptology – CRYPTO 2005, Proceedings, volume 3621 of Lecture Notes in
Computer Science, pages 17–36. Springer, 2005.

[92] Wikipedia. Close-mid front rounded vowel. http://en.wikipedia.org/wiki/Close-mid_
front_rounded_vowel (2011/01/15).

40

http://eprint.iacr.org/
http://eprint.iacr.org/2009/349
http://eprint.iacr.org/2009/510
http://eprint.iacr.org/2009/510
http://en.wikipedia.org/wiki/Close-mid_front_rounded_vowel
http://en.wikipedia.org/wiki/Close-mid_front_rounded_vowel

[93] S. Wu, D. Feng, and W. Wu. Cryptanalysis of the LANE Hash Function. In M. J. Jacobson,
V. Rijmen, and R. Safavi-Naini, editors, Selected Areas in Cryptography 2009, Proceedings,
volume 5867 of Lecture Notes in Computer Science, pages 126–140. Springer, 2009.

[94] S. Wu, D. Feng, and W. Wu. Practical Rebound Attack on 12-Round Cheetah-256. In
Information, Security and Cryptology - ICISC 2009, Proceedings, volume 5984 of Lecture
Notes in Computer Science, pages 300–314. Springer, 2009.

[95] K. Yasuda. “Sandwich” Is Indeed Secure: How to Authenticate a Message with Just One
Hashing. In J. Pieprzyk, H. Ghodosi, and E. Dawson, editors, Australasian Conference
on Information Security and Privacy – ACISP 2007, Proceedings, volume 4586 of Lecture
Notes in Computer Science, pages 355–369. Springer, 2007.

A The name

Gröstl is an Austrian dish, usually made of leftover potatoes and pork, cut into slices. These
are roasted on a pan together with onions and butterfat. The dish is often seasoned with salt,
pepper, marjoram, cumin, and parsley, and served with a fried egg or kraut (cabbage). Hence,
gröstl is somewhat similar to the American dish called hash.

The letter ‘ö’ was replaced by ‘ø’, which is a letter in the Danish alphabet that is pronounced
in the same way as ‘ö’. This way, the name, like the hash function itself, contains a mix of
Austrian and Danish influences.

The pronunciation of Grøstl may seem challenging. If you think so, then think of the letter
‘ø’ as the ‘i’ in “bird”. This letter is a so-called close-mid front rounded vowel, and if you need
more examples of its pronunciation, or a sound sample, check out [92].

The letter ‘ø’ may not appear on your keyboard. It can be written in a number of word
processing environments as follows:

Environment Command for ‘ø’

LATEX {\o}

HTML ø or ø
Windows Alt + 0248
Linux AltGr + o ∗

(∗ does not work in all settings.)

B S-box

The s-box used in Grøstl is defined in Table 4.

41

Table 4: The Grøstl s-box (identical to the Rijndael/AES s-box). Given input x, find x∧ f0 in
the first column (‘∧’ is logical and), and find x ∧ 0f in the first row. Where the corresponding
row and column meet, find the output S(x) of the s-box.

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

00 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
10 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
20 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
30 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
40 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
50 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
60 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
70 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
80 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
90 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a0 e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b0 e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c0 ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d0 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e0 e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f0 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

42

	Introduction
	Design goals
	Overall goals for the hash
	Failure-tolerant design
	Design considerations for the compression function

	Specification of Grøstl
	The hash function construction
	The compression function construction
	The output transformation
	The design of P and Q
	Initial values
	Padding
	Summary

	Design decisions and design features
	The security of the construction
	AddRoundConstant
	SubBytes
	ShiftBytes and ShiftBytesWide
	MixBytes
	Output transformation
	Number of rounds
	Absence of trap-doors

	Alternative descriptions of Grøstl
	The output transformation as a compression function call
	Tessaro's observation
	Barreto's observation

	Modes of use for Grøstl
	Message authentication
	Randomised hashing
	Security claims for the mentioned modes of operation

	Cryptanalytic results
	Attacks exploiting properties of the permutations
	Generic collision attacks
	Generic attacks on the iteration
	Non-random properties of the compression function
	Kelsey's observations
	Security claims and summary of known attacks

	Implementation aspects
	Software implementations
	Benchmarks on PC platforms
	Hardware implementations
	Implementation attacks

	Conclusion
	The name
	S-box

